【題目】如圖,在邊長為的正方形ABCD中,G是AD延長線上的一點(diǎn),且D為AG中點(diǎn),動(dòng)點(diǎn)M從A點(diǎn)出發(fā),以每秒1個(gè)單位的速度沿看A→C→G的路線向G點(diǎn)勻速運(yùn)動(dòng)(M不與A,G重合),設(shè)運(yùn)動(dòng)時(shí)間t秒,連接BM并延長交AG于N點(diǎn).
(1)當(dāng)t為何值時(shí),△ABM為等腰三角形?
(2)當(dāng)點(diǎn)N在AD邊上時(shí),若DN⊥HN,NH交∠CDG的平分線于H,求證:BN=HN;
(3)過點(diǎn)M分別作AB,AD的垂線,垂足分別為E,F,矩形AEMF與△ACG重疊部分的面積為S,請(qǐng)直接寫出S的最大值.
【答案】(1)存在;(2)詳見解析;(3)當(dāng)t=時(shí),S的最大值為.
【解析】
(1)四種情況:當(dāng)點(diǎn)M為AC的中點(diǎn)時(shí),AM=BM;當(dāng)點(diǎn)M與點(diǎn)C重合時(shí),AB=BM;當(dāng)點(diǎn)M在AC上,且AM= 時(shí),AM=AB;當(dāng)點(diǎn)M為CG的中點(diǎn)時(shí),AM=BM;△ABM為等腰三角形;
(2)在AB上截取AK=AN,連接KN;由正方形的性質(zhì)得出∠ADC=90°,AB=AD,∠CDG=90°,得出BK=DN,先證出∠BKN=∠NDH,再證出∠ABN=∠DNH,由ASA證明△BNK≌△NHD,得出BN=NH即可;
(3)①當(dāng)M在AC上時(shí),即0<t≤2時(shí),△AMF為等腰直角三角形,得出AF=FM= t,求出S= AFFM= t2;當(dāng)t=2時(shí),即可求出S的最大值;
②當(dāng)M在CG上時(shí),即2<t<4時(shí),先證明△ACD≌△GCD,得出∠ACD=∠GCD=45°,求出∠ACM=90°,證出△MFG為等腰直角三角形,得出FG=MGcos45°= t,得出S=S△ACG-S△CMJ-S△FMG,S為t的二次函數(shù),即可求出結(jié)果.
(1)解:存在;當(dāng)點(diǎn)M為AC的中點(diǎn)時(shí),AM=BM,則△ABM為等腰三角形;
當(dāng)點(diǎn)M與點(diǎn)C重合時(shí),AB=BM,則△ABM為等腰三角形;
當(dāng)點(diǎn)M在AC上,且AM= 時(shí),AM=AB,則△ABM為等腰三角形;
當(dāng)點(diǎn)M為CG的中點(diǎn)時(shí),AM=BM,則△ABM為等腰三角形;
(2)證明:在AB上截取AK=AN,連接KN;如圖1所示:
∵四邊形ABCD是正方形,
∴∠ADC=90°,AB=AD,
∴∠CDG=90°,
∵BK=AB﹣AK,ND=AD﹣AN,
∴BK=DN,
∵DH平分∠CDG,
∴∠CDH=45°,
∴∠NDH=90°+45°=135°,
∴∠BKN=180°﹣∠AKN=135°,
∴∠BKN=∠NDH,
在Rt△ABN中,∠ABN+∠ANB=90°,
又∵BN⊥NH,
即∠BNH=90°,
∴∠ANB+∠DNH=180°﹣∠BNH=90°,
∴∠ABN=∠DNH,
在△BNK和△NHD中,,
∴△BNK≌△NHD(ASA),
∴BN=NH;
(3)解:①當(dāng)M在AC上時(shí),即0<t≤2時(shí),△AMF為等腰直角三角形,
∵AM=t,
∴AF=FM= t,
∴S= AFFM=;
當(dāng)t=2時(shí),S的最大值= ×22=1;
②當(dāng)M在CG上時(shí),即2<t<4時(shí),如圖2所示:
CM=t﹣AC=t﹣2,MG=4﹣t,
在△ACD和△GCD中,,
∴△ACD≌△GCD(SAS),
∴∠ACD=∠GCD=45°,
∴∠ACM=∠ACD+∠GCD=90°,
∴∠G=90°﹣∠GCD=45°,
∴△MFG為等腰直角三角形,
∴FG=MGcos45°=(4﹣t) =2 ﹣t,
∴S=S△ACG﹣S△CMJ﹣S△FMG= ×2×﹣×CM×CM﹣×FM×FG,
=2﹣(t﹣2)2﹣(2﹣t)2=﹣ t2+4t﹣4=﹣(t﹣ )2+ ,
∴當(dāng)t=時(shí),S的最大值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在 中, ,將 繞點(diǎn) A 逆時(shí)針旋轉(zhuǎn)到的位置,使得 ,則 的度數(shù)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線 y x2 bx c 的圖象與 x 軸交于 A1, 0 、 B 4, 0 兩點(diǎn), 與 y 軸交于點(diǎn)C ,拋物線的對(duì)稱軸與 x 軸交于點(diǎn) D ,點(diǎn) M 從O 點(diǎn)出發(fā),以每秒 1 個(gè)單位長度的速度向 B 點(diǎn)運(yùn)動(dòng)(運(yùn)動(dòng)到 B 點(diǎn)停止),過點(diǎn) M 作 x 軸的垂線,交拋物線于點(diǎn) P ,交 BC 與點(diǎn)Q .
(1)求拋物線的解析式;
(2)設(shè)當(dāng)點(diǎn) M 運(yùn)動(dòng)了t (秒)時(shí),四邊形OBPC 的面積為 S ,求 S 與t 的函數(shù)關(guān)系式,并指出自變量t 的取值范圍;
(3)在線段 BC 上是否存在點(diǎn)Q ,使得DBQ 成為等腰三角形?若存在,求出點(diǎn)Q 的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若兩個(gè)二次函數(shù)圖象的頂點(diǎn),開口方向都相同,則稱這兩個(gè)二次函數(shù)為“同簇二次函數(shù)”.
(1)請(qǐng)寫出兩個(gè)為“同簇二次函數(shù)”的函數(shù);
(2)已知關(guān)于x的二次函數(shù)y1=2x2-4mx+2m2+1和y2=ax2+bx+2m2+5,其中y1的圖象經(jīng)過點(diǎn)A(1,1),y3=y1+y2,若y3與y1為“同簇二次函數(shù)”,求函數(shù)y2的表達(dá)式,并求出當(dāng)0≤x≤3時(shí),y2的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知x1,x2是關(guān)于x的一元二次方程4kx2﹣4kx+k+1=0的兩個(gè)實(shí)數(shù)根.
(1)是否存在實(shí)數(shù)k,使(2x1﹣x2)(x1﹣2x2)=﹣成立?若存在,求出k的值;若不存在,說明理由;
(2)求使﹣2的值為整數(shù)的實(shí)數(shù)k的整數(shù)值;
(3)若k=﹣2,λ=,試求λ的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知反比例函數(shù)和一次函數(shù)的圖象相交于第一象限內(nèi)的點(diǎn)A,且點(diǎn)A的橫坐標(biāo)為1.過點(diǎn)A作AB⊥x軸于點(diǎn)B,△AOB的面積為1.
(1)求反比例函數(shù)和一次函數(shù)的解析式.
(2)若一次函數(shù)的圖象與x軸相交于點(diǎn)C,求∠ACO的度數(shù).
(3)結(jié)合圖象直接寫出:當(dāng)>>0時(shí),x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線C1:y=a(x+2)2-5的頂點(diǎn)為P,與x軸相交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),點(diǎn)B的橫坐標(biāo)是1.
(1) 求P點(diǎn)坐標(biāo)及a的值;
(2)如圖(1),
拋物線C2與拋物線C1關(guān)于x軸對(duì)稱,將拋物線C2向右平移,平移后的拋物線記為C3,C3的頂點(diǎn)為M,當(dāng)點(diǎn)P、M關(guān)于點(diǎn)B成中心對(duì)稱時(shí),求C3的解析式;
(3) 如圖(2),
點(diǎn)Q是x軸正半軸上一點(diǎn),將拋物線C1繞點(diǎn)Q旋轉(zhuǎn)180°后得到拋物線C4.拋物線C4的頂點(diǎn)為N,與x軸相交于E、F兩點(diǎn)(點(diǎn)E在點(diǎn)F的左邊),當(dāng)以點(diǎn)P、N、F為頂點(diǎn)的三角形是直角三角形時(shí),求點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了開闊學(xué)生的視野,積極組織學(xué)生參加課外讀書活動(dòng).“放飛夢想”讀書小組協(xié)助老師隨機(jī)抽取本校的部分學(xué)生,調(diào)查他們最喜愛的圖書類別(圖書分為文學(xué)類、藝體類、科普類、其他等四類),并將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你結(jié)合圖中的信息解答下列問題:
(1)求被調(diào)查的學(xué)生人數(shù);
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)已知該校有1200名學(xué)生,估計(jì)全校最喜愛文學(xué)類圖書的學(xué)生有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+6經(jīng)過點(diǎn)A(﹣3,0)和點(diǎn)B(2,0).直線y=h(h為常數(shù),且0<h<6)與BC交于點(diǎn)D,與y軸交于點(diǎn)E,與AC交于點(diǎn)F,與拋物線在第二象限交于點(diǎn)G.
(1)求拋物線的解析式;
(2)連接BE,求h為何值時(shí),△BDE的面積最大;
(3)已知一定點(diǎn)M(﹣2,0).問:是否存在這樣的直線y=h,使△OMF是等腰三角形?若存在,請(qǐng)求出h的值和點(diǎn)G的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com