【題目】如圖,拋物線:與:相交于點(diǎn)、,與分別交軸于點(diǎn)、,且為線段的中點(diǎn).
(1)求的值;
(2)若,求的面積;
(3)拋物線的對(duì)稱(chēng)軸為,頂點(diǎn)為,在(2)的條件下:
①點(diǎn)為拋物線對(duì)稱(chēng)軸上一動(dòng)點(diǎn),當(dāng)的周長(zhǎng)最小時(shí),求點(diǎn)的坐標(biāo);
②如圖12.2,點(diǎn)在拋物線上點(diǎn)與點(diǎn)之間運(yùn)動(dòng),四邊形的面積是否存在最大值?若存在,求出面積的最大值和點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
【答案】(1);(2);(3)①P(,);②存在,
【解析】
(1)由兩拋物線解析式可分別用a和b表示出A、B兩點(diǎn)的坐標(biāo),利用B為OA的中點(diǎn)可得到a和b之間的關(guān)系式;
(2)由拋物線解析式可先求得C點(diǎn)坐標(biāo),過(guò)C作CD⊥x軸于點(diǎn)D,可證得△OCD∽△CAD,由相似三角形的性質(zhì)可得到關(guān)于a的方程,可求得OA和CD的長(zhǎng),可求得△OAC的面積;
(3)①連接OC與l的交點(diǎn)即為滿(mǎn)足條件的點(diǎn)P,可求得OC的解析式,則可求得P點(diǎn)坐標(biāo);
②設(shè)出E點(diǎn)坐標(biāo),則可表示出△EOB的面積,過(guò)點(diǎn)E作x軸的平行線交直線BC于點(diǎn)N,可先求得BC的解析式,則可表示出EN的長(zhǎng),進(jìn)一步可表示出△EBC的面積,則可表示出四邊形OBCE的面積,利用二次函數(shù)的性質(zhì)可求得其最大值,及E點(diǎn)的坐標(biāo).
解:
(1)在y=x2+ax中,
當(dāng)y=0時(shí),x2+ax=0,x1=0,x2=﹣a,
∴B(﹣a,0),
在y=﹣x2+bx中,
當(dāng)y=0時(shí),﹣x2+bx=0,x1=0,x2=b,
∴A(0,b),
∵B為OA的中點(diǎn),
∴b=﹣2a,
∴;
(2)聯(lián)立兩拋物線解析式可得:,
消去y整理可得,
解得,,
當(dāng)時(shí),,
∴C(,),
過(guò)C作CD⊥x軸于點(diǎn)D,如圖1,
∴D(,0),
∵∠OCA=90°,
∴△OCD∽△CAD,
∴,
∴CD2=ADOD,即,
∴a1=0(舍去),(舍去),,
∴OA=-2a=,CD==1,
∴;
(3)①拋物線,
∴其對(duì)稱(chēng)軸,點(diǎn)A關(guān)于l2的對(duì)稱(chēng)點(diǎn)為O(0,0),C( ,1),
則P為直線OC與l2的交點(diǎn),
設(shè)OC的解析式為y=kx,
∴1=k,得k=,
∴OC的解析式為,
當(dāng)時(shí),,
∴P(,);
②設(shè)E(m,)(),則,
而B(,0),C( ,1),
設(shè)直線BC的解析式為y=kx+b,
由,解得:k= ,b=-2,
∴直線BC的解析式為,
過(guò)點(diǎn)E作x軸的平行線交直線BC于點(diǎn)N,如圖2,
則,即x=
∴EN=
∴
∴S四邊形OBCE=S△OBE+S△EBC
,
,
∴當(dāng)時(shí),,
當(dāng)時(shí),,
∴E(,),.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是的直徑,點(diǎn)在上,,FD切于點(diǎn),連接并延長(zhǎng)交于點(diǎn),點(diǎn)為中點(diǎn),連接并延長(zhǎng)交于點(diǎn),連接,交于點(diǎn),連接.
(1)求證:;
(2)若的半徑為,求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y=-x+b與反比例函數(shù)y= (x>0)的圖象交于點(diǎn)A(m,3)和B(3,1).
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)點(diǎn)P(x,y)是直線AB上在第一象限內(nèi)的一個(gè)點(diǎn),過(guò)點(diǎn)P作PD⊥x軸于點(diǎn)D,連接OP,令△POD的面積為S,當(dāng)S>時(shí),直接寫(xiě)出點(diǎn)P橫坐標(biāo)x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知⊙O的直徑AB=10,AC是⊙O的弦.過(guò)點(diǎn)C作⊙O的切線DE交AB的延長(zhǎng)線于點(diǎn)E,過(guò)點(diǎn)A作AD⊥DE,垂足為D,與⊙O交于點(diǎn)F,設(shè)∠DAC、∠CEA的度數(shù)分別為α,β,且0°<α<45°
(1)用含α的代數(shù)式表示β;
(2)連結(jié)OF交AC于點(diǎn)G,若AG=CG,求AC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】收發(fā)微信紅包已成為各類(lèi)人群進(jìn)行交流聯(lián)系,增強(qiáng)感情的一部分,下面是甜甜和她的雙胞胎妹妹在六一兒童節(jié)期間的對(duì)話(huà).
請(qǐng)問(wèn):(1)2015年到2017年甜甜和她妹妹在六一收到紅包的年增長(zhǎng)率是多少?
(2)2017年六一甜甜和她妹妹各收到了多少錢(qián)的微信紅包?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖 1,若 P是口ABCD 邊 CD 上任意一點(diǎn),連結(jié) AP、BP,若△APB 的面積為 60 ,△APD 的面積為 18,則 S△APC= .
(2) 如圖 2,①若點(diǎn) P 運(yùn)動(dòng)到口ABCD 內(nèi)一點(diǎn)時(shí),試說(shuō)明 S△APB +S△DPC =S△BPC +S△APD.
②若此時(shí)△APB 的面積為 60,△APD 的面積為 18,則 S△APC= .
(3)如圖 3①利用(2)中的方法你會(huì)發(fā)現(xiàn),S△APB ,S△DPC ,S△BPC ,S△APD 之間存在怎樣的關(guān)系: .
②若此時(shí)△APB 的面積為 60,△APD 的面積為 18,請(qǐng)利用你的發(fā)現(xiàn),求 S△APC 的面積?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知、兩點(diǎn)的坐標(biāo)分別為,,直線與反比例函數(shù)的圖象相交于點(diǎn)和點(diǎn).
(1)求直線與反比例函數(shù)的解析式;
(2)求的度數(shù);
(3)將繞點(diǎn)順時(shí)針?lè)较蛐D(zhuǎn)角(為銳角),得到,當(dāng)為多少度時(shí),并求此時(shí)線段的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線的對(duì)稱(chēng)軸為直線,與軸的一個(gè)交點(diǎn)坐標(biāo)為,其部分圖象如圖所示,有下列結(jié)論:①;②;③當(dāng)時(shí),隨增大而增大;④拋物線的頂點(diǎn)坐標(biāo)為;⑤若方程兩根為(),則,.其中正確結(jié)論有( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等邊中,,點(diǎn)在上,且,點(diǎn)是上一動(dòng)點(diǎn),連接,將線段繞點(diǎn)逆時(shí)針旋轉(zhuǎn)得到線段,若要使點(diǎn)恰好在上,則的長(zhǎng)為().
A. 4B. 5C. 6D. 8
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com