已知拋物線y=2x2-4x-1
(1)求當x為何值時y取最小值,且最小值是多少?
(2)這個拋物線交x軸于點(x1,0),(x2,0),求值:
x2
x1
+
x1
x2

(3)將二次函數(shù)的圖象先向右平移2個單位長度,再向下平移1個單位長度后,所得二次函數(shù)圖象的頂點為A,請你直接寫出點A的坐標.
分析:(1)把函數(shù)解析式利用配方法,由一般式變?yōu)轫旤c式,根據(jù)a大于0,拋物線開口向上,頂點為最低點,y有最小值,當x等于頂點橫坐標時,y的最小值為頂點縱坐標;
(2)令y=0,得到一個一元二次方程,由拋物線與x軸的交點坐標可得方程的兩個根為x1,x2,由a,b及c的值,利用根與系數(shù)的關系求出兩個根之和與兩個根之積,把所求的式子通分后,分子再利用完全平方公式化簡,把求出的兩根之和與兩根之積代入即可求出值;
(3)根據(jù)平移規(guī)律“上加下減,左加右減”,由已知拋物線的解析式,可得出平移后拋物線的解析式.
解答:解:(1)y=2x2-4x-1=2(x2-2x+1)-2-1=2(x-1)2-3,
當x為1時,y最小值為-3.

(2)令y=0,得2x2-4x-1=0,
由題意得:方程的兩個根為x1,x2,
∵a=2,b=-4,c=-1,
∴x1+x2=-
b
a
=2,x1x2=
c
a
=-
1
2
,
x2
x1
+
x1
x2
=
x12+x22
x1x2
=
 (x1+x22-2x1x2  
x1x2
=-10;

(3)二次函數(shù)的圖象向右平移2個單位長度,
得到解析式為y=2(x-1-2)2-3,即y=2(x-3)2-3,
再向下平移1個單位長度,得y=2(x-3)2-3-1,即y=2(x-3)2-4,
則平移后頂點坐標為(3,-4).
點評:此題考查了二次函數(shù)的性質,根與系數(shù)的關系,一元二次方程與二次函數(shù)的關系,以及二次函數(shù)圖象的平移規(guī)律,其中利用配方法把解析式由一般式變?yōu)轫旤c式是解本題的突破點.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

已知拋物線y=2x2-4mx+m2
(1)求證:當m為非零實數(shù)時,拋物線與x軸總有兩個不同的交點;
(2)若拋物線與x軸的交點為A、B,頂點為C,且S△ABC=4
2
,求m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

6、已知拋物線y=2x2-4x+m的頂點在x軸上,則m的值是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

16、已知拋物線y=2x2-bx+3的圖象經(jīng)過點(1,4),則b=
1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知拋物線y=2x2+mx-6與x軸相交時兩交點間的線段長為4,則m的值是
±4
±4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知拋物線y=2x2+bx+c的頂點坐標為(2,-3),那么b=
-8
-8
,c=
5
5

查看答案和解析>>

同步練習冊答案