【題目】如圖(1)所示,A,E,F,C在一條直線上,AE=CF,過E,F分別作DE⊥AC,BF⊥AC,若AB=CD.
(1)求證:EG=FG.
(2)若將△DEC的邊EC沿AC方向移動,變?yōu)閳D(2)時,其余條件不變,上述結論是否成立?請說明理由.
【答案】(1)證明見解析(2)成立
【解析】試題分析:(1)先利用HL判定Rt△ABF≌Rt△CDE,得出BF=DE;再利用AAS判定△BFG≌△DEG,從而得出GE=GF;
(2)結論仍然成立,同理可以證明得到.
試題解析:(1)證明:∵DE⊥AC,BF⊥AC,
∴∠DEF=∠BFE=90°.
∵AE=CF,AE+EF=CF+EF.即AF=CE.
在Rt△ABF和Rt△CDE中, ,
∴Rt△ABF≌Rt△CDE(HL),
∴BF=DE.
在△BFG和△DEG中, ,
∴△BFG≌△DGE(AAS),
∴GE=GF;
(2)結論依然成立.
理由:∵DE⊥AC,BF⊥AC,
∴∠BFA=∠DEC=90°
∵AE=CF
∴AE﹣EF=CF﹣EF,即AF=CE,
在Rt△ABF和Rt△CDE中, ,
∴Rt△ABF≌Rt△CDE(HL),
∴DE=BF
在△BFG和△DEG中, ,
∴△BFG≌△DGE(AAS),
∴GE=GF.
科目:初中數(shù)學 來源: 題型:
【題目】如圖是函數(shù)y=與函數(shù)y=在第一象限內的圖象,點P是y=的圖象上一動點,PA⊥x軸于點A,交y=的圖象于點C,PB⊥y軸于點B,交y=的圖象于點D.
(1)求證:D是BP的中點;
(2)求四邊形ODPC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明在學習有理數(shù)運算時發(fā)現(xiàn)以下三個等式:(ab)2=a2b2,(ab)3=a3b3,(ab)4=a4b4.
(1)他把a=﹣2,b=3代入到第一個等式的左右兩邊驗證:
因為,左=(﹣2×3)2=36,右=(﹣2)2×32=36,左=右,所以成立.
請你幫他把a=﹣2,b=3代入到后兩個等式的左右兩邊驗證是否成立;
(2)通過上述驗證,請你猜想直接寫出結果:(ab)365等于多少,歸納得出:(ab)n等于多少(n為正整數(shù));
(3)請應用(2)中歸出的結論計算:(﹣)2017×112018
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,P是正△ABC內的一點,且PA=6,PB=8,PC=10.若將△PAC繞點A逆時針旋轉后,得到△P′AB.
(1)求旋轉角的度數(shù);
(2)求點P與點P′之間的距離;
(3)求∠APB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,∠B,∠C的平分線交于點O,D是外角與內角平分線交點,E是外角平分線交點,若∠BOC=120°,則∠D=( )
A. 15° B. 20° C. 25° D. 30°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了了解參加某校運動會的名運動員的年齡情況,從中抽取了名運動員的年齡,就這個問題,下面說法正確的是( )
A. 名運動員是總體 B. 每個運動員是個體
C. 抽取的名運動員是樣本 D. 每個運動員的年齡是個體
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,等腰Rt△ABC中,∠C=90°,BC=6cm,將△ABC繞點A順時針旋轉15°后得到△AB′C′,則圖中陰影部分的面積是cm2 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某蒜薹生產基地喜獲豐收,收獲蒜薹200噸.經市場調查,可采用批發(fā)、零售、冷庫儲藏后銷售三種方式,并按這三種方式銷售,計劃平均每噸的售價及成本如下表:
銷售方式 | 批發(fā) | 零售 | 儲藏后銷售 |
售價(元/噸) | 3000 | 4500 | 5500 |
成本(元/噸) | 700 | 1000 | 1200 |
若經過一段時間,蒜薹按計劃全部售出獲得的總利潤為y(元),蒜薹零售x(噸),且零售量是批發(fā)量的.
(1)求y與x之間的函數(shù)關系式;
(2)由于受條件限制,經冷庫儲藏售出的蒜薹最多80噸,求該生產基地按計劃全部售完蒜薹獲得的最大利潤.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我市某中學舉辦“網絡安全知識答題競賽”,初、高中部根據初賽成績各選出5名選手組成初中代表隊和高中代表隊參加學校決賽,兩個隊各選出的5名選手的決賽成績如圖所示.
平均分(分) | 中位數(shù)(分) | 眾數(shù)(分) | 方差(分2) | |
初中部 | a | 85 | b | s初中2 |
高中部 | 85 | c | 100 | 160 |
(1)根據圖示計算出a、b、c的值;
(2)結合兩隊成績的平均數(shù)和中位數(shù)進行分析,哪個隊的決賽成績較好?
(3)計算初中代表隊決賽成績的方差s初中2,并判斷哪一個代表隊選手成績較為穩(wěn)定.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com