【題目】如圖,在矩形ABCD中,AC、BD相交于O,AE平分∠BAD,交BC于E,若∠CAE=15°,求∠BOE的度數(shù).
【答案】75°
【解析】試題分析:根據(jù)矩形的性質(zhì)和角平分線的定義可得∠BAE=45°,再由∠CAE=15°,可求得∠BAOE=60°,可判定△AOB為等邊三角形,即可得OB=AB,再證得AB=BE,即可得OB=BE,從而求得∠BOE的度數(shù).
試題解析:
解:在矩形ABCD中,∵AE平分∠BAD,
∴∠BAE=45°
又∵∠CAE=15°
∴∠BAO=∠BAE+∠CAE=60°,
∴△AOB為等邊三角形,
∴OB=AB,∠ABO=60°,
∴∠OBE=∠ABC-∠ABO=90°-60°=30°
∵∠BAE=45°,∠BEA=45°,
∴AB=BE,OB=BE
∴∠BOE=75°
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】課本拓展
舊知新意:
我們?nèi)菀鬃C明,三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和.那么,三角形的一個(gè)內(nèi)角與它不相鄰的兩個(gè)外角的和之間存在怎樣的數(shù)量關(guān)系呢?
1.嘗試探究:
(1)如圖1,∠DBC與∠ECB分別為△ABC的兩個(gè)外角,試探究∠A與∠DBC+∠ECB之間存在怎樣的數(shù)量關(guān)系?為什么?
2.初步應(yīng)用:
(2)如圖2,在△ABC紙片中剪去△CED,得到四邊形ABDE,∠1=130°,則∠2-∠C= ;
(3)小明聯(lián)想到了曾經(jīng)解決的一個(gè)問題:如圖3,在△ABC中,BP、CP分別平分外角∠DBC、∠ECB,∠P與∠A有何數(shù)量關(guān)系?請利用上面的結(jié)論直接寫出答案 .
3拓展提升:
(4)如圖4,在四邊形ABCD中,BP、CP分別平分外角∠EBC、∠FCB,∠P與∠A、∠D有何數(shù)量關(guān)系?為什么?(若需要利用上面的結(jié)論說明,可直接使用,不需說明理由)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2017年5月11時(shí)05分,昆明南至北京西G405/6次“世界的香格里拉”高鐵旅游文化列車駛離昆明南站,駛向北京,這是云南首趟開往北京的高鐵動車,北京西到昆明南G405高鐵時(shí)刻表站點(diǎn)票價(jià)一覽一等座:1877.5元,其中數(shù)據(jù)1877.5元保留2個(gè)有效數(shù)字用科學(xué)記數(shù)法表示為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一段拋物線:y=﹣x(x﹣3)(0≤x≤3),記為C1,它與x軸交于點(diǎn)O,A1;將C1繞點(diǎn)A1旋轉(zhuǎn)180°得C2,交x軸于點(diǎn)A2;將C2繞點(diǎn)A2旋轉(zhuǎn)180°得C3,交x軸于點(diǎn)A3;…若P(2015,m)是其中某段拋物線上一點(diǎn),則m= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀理解題: 閱讀:解不等式(x+1)(x﹣3)>0
解:根據(jù)兩數(shù)相乘,同號得正,原不等式可以轉(zhuǎn)化為: 或
解不等式組 得:x>3
解不等式組 得:x<﹣1
所以原不等式的解集為:x>3或x<﹣1
問題解決:根據(jù)以上閱讀材料,解不等式(x﹣2)(x+3)<0.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把某不等式組中兩個(gè)不等式的解集表示在數(shù)軸上,如圖所示,則這個(gè)不等式組可能是 ( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com