【題目】如圖,四邊形ABCD中,AD∥BC,∠BDC=90°,BD=CD,DM是BC邊上的中線,過(guò)點(diǎn)C作CE⊥AB,垂足為E,CE交線段BD于點(diǎn)F,交DM于點(diǎn)N,連接AF.
(1)求證:∠DCN=∠DBA;
(2)直接寫出線段AF、AB和CF之間的數(shù)量關(guān)系;
(3)當(dāng)E恰好為AB中點(diǎn)時(shí),∠BAD=______度.
【答案】(1)證明見(jiàn)解析;(2)AF+AB=CF;(3)105.
【解析】
(1)根據(jù)垂直的定義得到∠FEB=∠BDC=90°,根據(jù)對(duì)頂角相等得到∠DFC=∠EFB,于是得到∠DCN=∠DBA;
(2)根據(jù)等腰直角三角形的性質(zhì)得到CM=BM,DM⊥BC,求得∠DMC=∠DMB=90°,根據(jù)平行線的性質(zhì)得到∠MDA=90°,得到∠ADB=∠NDC=45°,根據(jù)全等三角形的性質(zhì)得到AB=CN,DA=DN,AF=NF,于是得到結(jié)論;
(3)連接AC,過(guò)A作AH⊥BC于H,由矩形的性質(zhì)得到DM=AH,求得AH=BC,根據(jù)線段垂直平分線的性質(zhì)得到AC=BC,求得AH=AC,得到∠ACH=30°,根據(jù)平行線的性質(zhì)得到結(jié)論.
解:(1)∵CE⊥AB,
∴∠FEB=∠BDC=90°,
∵∠DFC=∠EFB,
∴∠DCN=∠DBA,
(2)∵BD=CD,∠BDC=90°
∴△BDC是等腰直角三角形,
又∵DM為BC邊中線,
∴CM=BM,DM⊥BC,
∴∠DMC=∠DMB=90°,
又∵AD∥BC,
∴∠MDA=90°,
又∵∠BDC=90°,
∴∠ADB=∠NDC=45°,
∴△ADB≌△NDC(ASA),
∴AB=CN,DA=DN,
∴∠ADF=∠NDF,
∴△ADF≌△NDF(SAS),
∴AF=NF,
∴CF=CN+NF=AB+AF,
∴AF+AB=CF;
(3)連接AC,過(guò)A作AH⊥BC于H,
∴四邊形ADMH是矩形,
∴DM=AH,
∴AH=BC,
∵E恰好為AB中點(diǎn),CE⊥AB,
∴AC=BC,
∴AH=AC,
∴∠ACH=30°,
∴∠ABC=∠CAB==75°,
∵AD∥BC,
∴∠DAC=∠ACB=30°,
∴∠DAB=105°,
故答案為:105.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在規(guī)格為8×8的邊長(zhǎng)為1個(gè)單位的正方形網(wǎng)格中(每個(gè)小正方形的邊長(zhǎng)為1),的三個(gè)頂點(diǎn)都在格點(diǎn)上,且直線、互相垂直.
(1)畫出關(guān)于直線的軸對(duì)稱圖形;
(2)在直線上確定一點(diǎn),使的周長(zhǎng)最。ūA舢媹D痕跡);周長(zhǎng)的最小值為_____;
(3)試求的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別是A(1,1),B(4,1),C(3,3).
(1)將△ABC向下平移5個(gè)單位后得到△A1B1C1,請(qǐng)畫出△A1B1C1;
(2)將△ABC繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°后得到△A2B2C2,請(qǐng)畫出△A2B2C2;
(3)判斷以O,A1,B為頂點(diǎn)的三角形的形狀.(無(wú)須說(shuō)明理由)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果三角形有一邊上的中線恰好等于這邊的長(zhǎng),那么我們稱這個(gè)三角形為“美麗三角形”,
(1)如圖△ABC中,AB=AC=,BC=2,求證:△ABC是“美麗三角形”;
(2)在Rt△ABC中,∠C=90°,AC=2,若△ABC是“美麗三角形”,求BC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市將開(kāi)展以“走進(jìn)中國(guó)數(shù)學(xué)史”為主題的知識(shí)凳賽活動(dòng),紅樹(shù)林學(xué)校對(duì)本校100名參加選拔賽的同學(xué)的成績(jī)按A,B,C,D四個(gè)等級(jí)進(jìn)行統(tǒng)計(jì),繪制成如下不完整的統(tǒng)計(jì)表和扇形統(tǒng)計(jì)圖:
成績(jī)等級(jí) | 頻數(shù)(人數(shù)) | 頻率 |
A | 4 | 0.04 |
B | m | 0.51 |
C | n | |
D | ||
合計(jì) | 100 | 1 |
(1)求m= ,n= ;
(2)在扇形統(tǒng)計(jì)圖中,求“C等級(jí)”所對(duì)應(yīng)心角的度數(shù);
(3)成績(jī)等級(jí)為A的4名同學(xué)中有1名男生和3名女生,現(xiàn)從中隨機(jī)挑選2名同學(xué)代表學(xué)校參加全市比賽,請(qǐng)用樹(shù)狀圖法或者列表法求出恰好選中“1男1女”的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知整數(shù)a0,a1,a2,a3,a4,…,滿足下列條件:a0=0,a1=﹣|a0+1|,a2=﹣|a1+2|,a3=﹣|a2+3|,…,以此類推,a2019的值是( )
A. ﹣1009B. ﹣1010C. ﹣2018D. ﹣2020
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩地相距300千米,一輛貨車和一輛轎車分別從甲地開(kāi)往乙地轎車的平均速度大于貨車的平均速度,如圖,線段OA、折線BCD分別表示兩車離甲地的距離單位:千米與時(shí)間單位:小時(shí)之間的函數(shù)關(guān)系.
線段OA與折線BCD中,______表示貨車離甲地的距離y與時(shí)間x之間的函數(shù)關(guān)系.
求線段CD的函數(shù)關(guān)系式;
貨車出發(fā)多長(zhǎng)時(shí)間兩車相遇?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】嘉淇準(zhǔn)備完成題目:化簡(jiǎn):,發(fā)現(xiàn)系數(shù)“”印刷不清楚.
(1)他把“”猜成3,請(qǐng)你化簡(jiǎn):(3x2+6x+8)–(6x+5x2+2);
(2)他媽媽說(shuō):“你猜錯(cuò)了,我看到該題標(biāo)準(zhǔn)答案的結(jié)果是常數(shù).”通過(guò)計(jì)算說(shuō)明原題中“”是幾?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠AOB是一鋼架,∠AOB=15°,為使鋼架更加牢固,需在其內(nèi)部添加一些鋼管EF、FG、GH…添的鋼管長(zhǎng)度都與OE相等,則最多能添加這樣的鋼管( )根.
A. 2 B. 4 C. 5 D. 無(wú)數(shù)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com