【題目】在平面直角坐標系XOY中,一次函數(shù)的圖象是直線l1,l1與x軸、y軸分別相交于A、B兩點.直線l2過點C(a,0)且與直線l1垂直,其中a>0.點P、Q同時從A點出發(fā),其中點P沿射線AB運動,速度為每秒4個單位;點Q沿射線AO運動,速度為每秒5個單位.
(1)寫出A點的坐標和AB的長;
(2)當點P、Q運動了多少秒時,以點Q為圓心,PQ為半徑的⊙Q與直線l2、y軸都相切,求此時a的值.
【答案】解:(1)∵一次函數(shù)的圖象是直線l1,l1與x軸、y軸分別相交于A、B兩點,
∴y=0時,x=﹣4,
∴A(﹣4,0),AO=4,
∵圖象與y軸交點坐標為:(0,3),BO=3,
∴AB=5;
(2)由題意得:AP=4t,AQ=5t,==t,
又∠PAQ=∠OAB,
∴△APQ∽△AOB,
∴∠APQ=∠AOB=90°,
∵點P在l1上,
∴⊙Q在運動過程中保持與l1相切,
①當⊙Q在y軸右側(cè)與y軸相切時,設(shè)l2與⊙Q相切于F,由△APQ∽△AOB,得:
∴,
∴PQ=6;
連接QF,則QF=PQ,由△QFC∽△APQ∽△AOB,
得:,
∴,
∴,
∴QC=,
∴a=OQ+QC=,
②當⊙Q在y軸的左側(cè)與y軸相切時,設(shè)l2與⊙Q相切于E,由△APQ∽△AOB得:=,
∴PQ=,
連接QE,則QE=PQ,由△QEC∽△APQ∽△AOB得:=,
∴,=,
∴QC=,a=QC﹣OQ=,
∴a的值為和,
【解析】略
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩個文具店均出售鋼筆和筆記本,其中每支鋼筆定價10元,每本筆記本定價5元.兩個文具店在開展促銷活動中,各自提出優(yōu)惠方案如下:
甲店:買一支鋼筆送一本筆記本;
乙店:買鋼筆或筆記本都按定價的80%付款.
現(xiàn)小明要購買鋼筆30支,筆記本本(>30).
(1)試用含的代數(shù)式表示:
①小明到甲店購買所付款為 元;
②小明到乙店購買所付款為 元;
(2)當40時,你能幫小明設(shè)計一種最為省錢的購買方案嗎?試寫出你的購買方案,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于的函數(shù)(為常數(shù))
(1)若函數(shù)的圖象與軸恰有一個交點,求的值;
(2)若函數(shù)的圖象是拋物線,且頂點始終在軸上方,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,O是對角線AC的中點,過點O作AC的垂線與邊AD、BC分別交于E、F.四邊形AFCE是菱形嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,大拇指與小拇指盡量張開時,兩指尖的距離稱為指距.人體構(gòu)造學(xué)的研究成果表明,一般情況下人的指距d和身高h成如下所示的關(guān)系.
指距d(cm) | 20 | 21 | 22 | 23 |
身高h(cm) | 160 | 169 | 178 | 187 |
(1)直接寫出身高h與指距d的函數(shù)關(guān)系式;
(2)姚明的身高是226厘米,可預(yù)測他的指距約為多少?(精確到0.1厘米)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】要建一個如圖所示的面積為300 的長方形圍欄,圍欄總長50m,一邊靠墻(墻長25m),
(1)求圍欄的長和寬;
(2)能否圍成面積為400 的長方形圍欄?如果能,求出該長方形的長和寬,如果不能請說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(9分)某批發(fā)商以每件50元的價格購進800件T恤,第一個月以單價80元銷售,售出了200件;第二個月如果單價不變,預(yù)計仍可售出200件,批發(fā)商為增加銷售量,決定降價銷售,根據(jù)市場調(diào)查,單價每降低1元,可多售出10件,但最低單價應(yīng)高于購進的價格;第二個月結(jié)束后,批發(fā)商將對剩余的T恤一次性清倉銷售,清倉是單價為40元,設(shè)第二個月單價降低元.
(1)填表:(不需化簡)
(2)如果批發(fā)商希望通過銷售這批T恤獲利9000元,那么第二個月的單價應(yīng)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,以點A為圓心,AB長為半徑畫弧交AD于點F,再分別以點B、F為圓心,大于長為半徑畫弧,兩弧交于一點P,連接AP并延長交BC于點E,連接EF.
(1)四邊形ABEF是_______;(選填矩形、菱形、正方形、無法確定)(直接填寫結(jié)果)
(2)AE,BF相交于點O,若四邊形ABEF的周長為40,BF=10,則AE的長為________,∠ABC=________°.(直接填寫結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,下列4個三角形中,均有AB=AC,則經(jīng)過三角形的一個頂點的一條直線能夠?qū)⑦@個三角形分成兩個小等腰三角形的是( 。
A. ①③B. ①②④C. ①③④D. ①②③④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com