【題目】6月14日是“世界獻血日”,某市采取自愿報名的方式組織市民義務獻血.獻血時要對獻血者的血型進行檢測,檢測結果有“A型”、“B型”、“AB型”、“O型”4種類型.在獻血者人群中,隨機抽取了部分獻血者的血型結果進行統(tǒng)計,并根據這個統(tǒng)計結果制作了兩幅不完整的圖表:
血型 | A | B | AB | O |
人數 |
| 10 | 5 |
|
(1)這次隨機抽取的獻血者人數為 人,m= ;
(2)補全上表中的數據;
(3)若這次活動中該市有3000人義務獻血,請你根據抽樣結果回答:
從獻血者人群中任抽取一人,其血型是A型的概率是多少?并估計這3000人中大約有多少人是A型血?
【答案】(1)50,20;(2)12,23;見圖;(3)大約有720人是A型血.
【解析】
(1)用AB型的人數除以它所占的百分比得到隨機抽取的獻血者的總人數,然后用B型的人數除以抽取的總人數即可求得m的值;
(2)先計算出O型的人數,再計算出A型人數,從而可補全上表中的數據;
(3)用樣本中A型的人數除以50得到血型是A型的概率,然后用3000乘以此概率可估計這3000人中是A型血的人數.
(1)這次隨機抽取的獻血者人數為5÷10%=50(人),
所以m=×100=20,
故答案為50,20;
(2)O型獻血的人數為46%×50=23(人),
A型獻血的人數為50﹣10﹣5﹣23=12(人),
補全表格中的數據如下:
血型 | A | B | AB | O |
人數 | 12 | 10 | 5 | 23 |
故答案為12,23;
(3)從獻血者人群中任抽取一人,其血型是A型的概率=,
3000×=720,
估計這3000人中大約有720人是A型血.
科目:初中數學 來源: 題型:
【題目】如圖,點P在⊙O的直徑AB的延長線上,PC為⊙O的切線,點C為切點,連接AC,過點A作PC的垂線,點D為垂足,AD交⊙O于點E.
(1)如圖1,求證:∠DAC=∠PAC;
(2)如圖2,點F(與點C位于直徑AB兩側)在⊙O上,,連接EF,過點F作AD的平行線交PC于點G,求證:FG=DE+DG;
(3)在(2)的條件下,如圖3,若AE=DG,PO=5,求EF的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某小區(qū)改善生態(tài)環(huán)境,實行生活垃圾的分類處理,將生活垃圾分成三類:廚房垃圾、可回收垃圾和其他垃圾,分別記為m,n,p,并且設置了相應的垃圾箱,“廚房垃圾”箱,“可回收垃圾”箱和“其他垃圾”箱,分別記為A,B,C.
(1)若將三類垃圾隨機投入三類垃圾箱,請用畫樹狀圖的方法求垃圾投放正確的概率;
(2)為了了解居民生活垃圾分類投放的情況,現(xiàn)隨機抽取了小區(qū)三類垃圾箱中總共1 000噸生活垃圾,數據統(tǒng)計如下(單位:噸):
A | B | C | |
m | 400 | 100 | 100 |
n | 30 | 240 | 30 |
p | 20 | 20 | 60 |
請根據以上信息,試估計“廚房垃圾”投放正確的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某學習小組做“用頻率估計概率”的實驗時,統(tǒng)計了某一結果出現(xiàn)的頻率,繪制了如下折線統(tǒng)計圖,則符合這一結果的實驗最有可能的是( 。
A. 袋中裝有大小和質地都相同的3個紅球和2個黃球,從中隨機取一個,取到紅球
B. 擲一枚質地均勻的正六面體骰子,向上的面的點數是偶數
C. 先后兩次擲一枚質地均勻的硬幣,兩次都出現(xiàn)反面
D. 先后兩次擲一枚質地均勻的正六面體骰子,兩次向上的面的點數之和是7或超過9
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某數學興趣小組做“用頻率估計概率”的試驗時,統(tǒng)計了某一事件發(fā)生的頻率,繪制了如圖所示的折線圖.
(1)該事件最有可能是 (填寫一個你認為正確的序號).
①一個路口的紅綠燈,紅燈的時間為30秒,黃燈的時間為5秒,綠燈的時間為40秒,多次經過該路口時,看見紅燈的概率;
②擲一枚硬幣,正面朝上;
③暗箱中有一個紅球和2個黃球,這些球除了顏色外無其他差別,從中任取一球是紅球.
(2)你設計的一個游戲,多次擲一個質地均勻的正六面體骰子,當骰子數字 正面朝上,該事件發(fā)生的概率接近于.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖①,定義:在四邊形ABCD中,若AD=BC,且∠ADB+∠BCA=180°,則把四邊形ABCD叫作互補等對邊四邊形.如圖②,在等腰△ABE中,AE=BE,四邊形ABCD是互補等對邊四邊形.試說明:∠ABD=∠BAC=∠E.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直角坐標系中,△ABC的頂點都在網格點上,其中,C點坐標為(1,2).
(1)寫出點A、B的坐標;
(2)將△ABC先向左平移2個單位長度,再向上平移1個單位長度,得到△A′B′C′,寫出A′B′C′的三個頂點坐標;
(3)求△ABC的面積.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com