如圖2,六邊形ABCDEF是⊙O的內(nèi)接正六邊形,若,則向量可表示為(   ).
A.B.C.D.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(1)已知:如圖1,△ABC是⊙O的內(nèi)接正三角形,點P為
BC
上一動點,求證:PA=PB+PC.
下面給出一種證明方法,你可以按這一方法補全證明過程,也可以選擇另外的證明方法.
證明:在AP上截取AE=CP,連接BE
∵△ABC是正三角形
∴AB=CB
∵∠1和∠2的同弧圓周角
∴∠1=∠2
∴△ABE≌△CBP
(2)如圖2,四邊形ABCD是⊙O的內(nèi)接正方形,點P為
BC
上一動點,求證:PA=PC+
2
PB.
(3)如圖3,六邊形ABCDEF是⊙O的內(nèi)接正六邊形,點P為
BC
上一動點,請?zhí)骄縋A、PB、PC三者之間有何數(shù)量關(guān)系,直接寫出結(jié)論.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1)已知:如圖1,△ABC是⊙O的內(nèi)接正三角形,點P為弧BC上一動點,求證:PA=PB+PC;
(2)如圖2,四邊形ABCD是⊙O的內(nèi)接正方形,點P為弧BC上一動點,求證:PA=PC+
2
PB
;
(3)如圖3,六邊形ABCDEF是⊙O的內(nèi)接正六邊形,點P為弧BC上一動點,請?zhí)骄縋A、PB、PC三者之間有何數(shù)量關(guān)系,并給予證明.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在△ABC中,AB、BC、AC三邊的長分別為
10
、
5
13
,求這個三角形的面積.小華同學(xué)在解答這道題時,先畫一個正方形網(wǎng)格(每個小正方形的邊長為1),再在網(wǎng)格中畫出格點△ABC(即△ABC三個頂點都在小正方形的頂點處),如圖①所示.這樣不需要求△ABC的高,而借用網(wǎng)格就能計算出它的面積,這種方法叫做構(gòu)圖法.
(1)△ABC的面積為:
(2)若△DEF三邊的長分別為
13
、2
5
、
29
,請在圖①的正方形網(wǎng)格中畫出相應(yīng)的△DEF,并利用構(gòu)圖法求出它的面積.
(3)利用第(2)小題解題方法完成下題:如圖②,一個六邊形綠化區(qū)ABCDEF被分割成7個部分,其中正方形ABQP,CDRQ,EFPR的面積分別為13,20,29,且△PQR、△BCQ、△DER、△APF的面積相等,求六邊形綠化區(qū)ABCDEF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在六邊形ABCDEF中,BA⊥FA,BC⊥DC,∠α、∠β分別是∠ABC和∠EDC的補角,∠α=55°,∠β=30°,則∠E+∠F的度數(shù)為
265°
265°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,邊長均為6的正△ABC和正△A′B′C′原來完全重合.如圖2,現(xiàn)保持正△ABC不動,使正△A′B′C′繞兩個正三角形的公共中心點O按順時針方向旋轉(zhuǎn),設(shè)旋轉(zhuǎn)角度為α(α>0°).(注:除第 (3)題中的第②問,其余各問只要直接給出結(jié)果即可)
(1)當α多少時,正△A′B′C′與正△ABC出現(xiàn)旋轉(zhuǎn)過程中的第一次完全重合?
(2)當0°<α<360°時,要使正△A′B′C′與正△ABC重疊部分面積最小,α可以取哪些角度?
(3)旋轉(zhuǎn)時,如圖3,正△ABC和正△A′B′C′始終具有公共的外接圓⊙O.當0°<α<60°時,記正△A′B′C′與正△ABC重疊部分為六邊形DEFGHI.當α在這個范圍內(nèi)變化時,
①求△ADI面積S相應(yīng)的變化范圍;
②△ADI的周長是否一定?說出你的理由.
精英家教網(wǎng)

查看答案和解析>>

同步練習(xí)冊答案