【題目】如圖所示,將矩形ABCD沿AF折疊,使點(diǎn)D落在BC邊的點(diǎn)E處,過點(diǎn)E作EG∥CD交AF于點(diǎn)G,連接DG.
(1)求證:四邊形EFDG是菱形;
(2)求證:EG2=GF×AF;
(3)若,折痕AF=5cm,則矩形ABCD的周長(zhǎng)為 .
【答案】(1)證明見解析;(2)證明見解析;(3)36cm.
【解析】試題分析:(1)先依據(jù)翻折的性質(zhì)和平行線的性質(zhì)證明∠DGF=∠DFG,從而得到GD=DF,接下來依據(jù)翻折的性質(zhì)可證明DG=GE=DF=EF。
(2)連接DE,交AF于點(diǎn)O.由菱形的性質(zhì)可知GF⊥DE,OG=OF=GF,接下來,證明△DOF∽△ADF,由相似三角形的性質(zhì)可證明DF2=FOAF,于是可得到GE、AF、FG的數(shù)量關(guān)系.
(3)過點(diǎn)G作GH⊥DC,垂足為H.利用(2)的結(jié)論可求得FG=4,然后再△ADF中依據(jù)勾股定理可求得AD的長(zhǎng),然后再證明△FGH∽△FAD,利用相似三角形的性質(zhì)可求得GH的長(zhǎng),最后依據(jù)BE=AD-GH求解即可.
試題解析:
(1)證明:如圖所示,
∵EG∥CD, ∴∠EGF=∠DFG.
∵由折疊的性質(zhì)可知:GD=GE,DF=EF,∠DGF=∠EGF,
∴∠DGF=∠DFG. ∴GD=DF.
∴GD=GE=DF=EF,∴四邊形EFDG為菱形;
(2)證明:如圖所示,連接DE,交AF于點(diǎn)O.
∵四邊形EFDG為菱形, ∴GF⊥DE,OG=OF=GF.
∵∠DOF=∠ADF=90°,∠OFD=∠DFA, ∴△DOF∽△ADF.
∴,即DF2=OFAF.
∵OF=GF,DF=EG, ∴EG2=GFAF ;
(3)矩形ABCD的周長(zhǎng)為36 cm.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】以下四種沿AB折疊的方法中,不一定能判定紙帶兩條邊線a,b互相平行的是( )
A.如圖1,展開后測(cè)得∠1=∠2
B.如圖2,展開后測(cè)得∠1=∠2且∠3=∠4
C.如圖3,測(cè)得∠1=∠2
D.如圖4,展開后再沿CD折疊,兩條折痕的交點(diǎn)為O,測(cè)得OA=OB,OC=OD
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若a>0,M= ,N=
(1)當(dāng)a=1時(shí),M= , N=;當(dāng)a=3時(shí),M= , N=;
(2)猜想M與N的大小關(guān)系,并證明你的猜想.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列各式由左到右的變形正確的是( )
A. -x-y=-(x-y) B. -x2+2xy-y2=-(x2+2xy+y2)
C. (y-x)2=(x-y)2 D. (y-x)3=(x-y)3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“遼寧號(hào)”航母是中國海軍航空母艦的首艦,標(biāo)準(zhǔn)排水量57000噸,滿載排水量67500噸,數(shù)據(jù)67500用科學(xué)記數(shù)法表示為( )
A.675×102
B.67.5×102
C.6.75×104
D.6.75×105
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知反比例函數(shù)y=﹣ 的圖像和一次函數(shù)y=kx﹣1的圖像都經(jīng)過點(diǎn)P(m,﹣3m).
(1)求點(diǎn)P的坐標(biāo)和這個(gè)一次函數(shù)的表達(dá)式;
(2)若這兩個(gè)圖像的另一個(gè)交點(diǎn)Q縱坐標(biāo)為2,O為坐標(biāo)原點(diǎn),求△POQ的面積;
(3)若點(diǎn)M(a,y1)和點(diǎn)N(a+1,y2)都在這個(gè)反比例函數(shù)的圖像上,比較y1和y2的大。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com