【題目】二次函數(shù),是常數(shù),且中的的部分對應值如下表所示,則下列結論中,正確的個數(shù)有(

時,時,的值隨值的增大而減;

方程有兩個不相等的實數(shù)根.

A. 4 B. 3 C. 2 D. 1

【答案】B

【解析】

閱讀題目,先利用待定系數(shù)法求得該函數(shù)解析式,根據(jù)a的值即可判斷(1) ;接下來根據(jù)函數(shù)解析式可得函數(shù)對稱軸,根據(jù)二次函數(shù)的性質判斷(2)(3) ;對于(4),由yax2bxc (a,bc為常數(shù),且a0)的圖象與x軸有兩個交點,頂點坐標的縱坐標>5,可得方程ax2bxc5根的情況,據(jù)此判斷即可,至此問題得解.

由圖表中數(shù)據(jù)可得出x=-1時,y=-1,x0時,y3,x1時,y5,則有,解得,則y=-x23x3=-(x2,因為a=-1<0,所以(1)正確,因為該函數(shù)的對稱軸x,所以當x0時,y3,故(2)正確,根據(jù)二次函數(shù)的性質可得到x時,y的值隨x值的增大而減小,x時,y的值隨x的值的增大而增大,故(3)錯誤,因為yax2bxc的圖象與x軸有交點,頂點坐標的縱坐標>5,所以方程ax2bxc5,有兩個不相等的實數(shù)根,故(4)正確,故答案選B.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】觀察下面圖1、圖2、圖3各正方形中的四個數(shù)之間的變化規(guī)律,按照這樣的變化規(guī)律,圖n中的M應為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們定義:如果一個三角形一條邊上的高等于這條邊,那么這個三角形叫做等高底三角形,這條邊叫做這個三角形的等底”.

(1)概念理解:

如圖1,在ABC中,AC=6,BC=3,ACB=30°,試判斷ABC是否是等高底三角形,請說明理由.

(2)問題探究:

如圖2,ABC等高底三角形,BC等底,作ABC關于BC所在直線的對稱圖形得到A'BC,連結AA′交直線BC于點D.若點BAA′C的重心,求的值.

(3)應用拓展:

如圖3,已知l1l2,l1l2之間的距離為2.“等高底ABC等底”BC在直線l1上,點A在直線l2上,有一邊的長是BC倍.將ABC繞點C按順時針方向旋轉45°得到A'B'C,A′C所在直線交l2于點D.求CD的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠BAC=90°,AD是高,BE是中線,CF是角平分線,CFAD于點G,交BE于點H,下面說法中正確的序號是_____

①△ABE的面積等于△BCE的面積;②∠AFG=∠AGF;③∠FAG=2∠ACF;④BH=CH.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ACBCDCEC,AC=BC,DC=EC,AC=3CE=4,則AD2+BE2=__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(模型建立)

1)如圖1,等腰直角三角形ABC中,∠ACB90°CBCA,直線ED經(jīng)過點C,過AADED于點D,過BBEED于點E

求證:BEC≌△CDA;

(模型應用)

2)① 已知直線l1yx8與坐標軸交于點A、B,將直線l1繞點A逆時針旋轉45至直線l2,如圖2,求直線l2的函數(shù)表達式;

如圖3,長方形ABCO,O為坐標原點,點B的坐標為(8,-6),點AC分別在坐標軸上,點P是線段BC上的動點,點D是直線y=-3x6上的動點且在y軸的右側.若APD是以點D為直角頂點的等腰直角三角形,請直接寫出點D的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABCE,DBC邊的三等分點FAC的中點,BF分別交AD,AE于點G,HBGGHHF等于(  )

 

A. 123 B. 352 C. 532 D. 531

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB3,AC5,ADBC邊上的中線,且AD2,延長AD到點E,使DEAD,連接CE

1)求證:△AEC是直角三角形.

2)求BC邊的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校九年級開展征文活動,征文主題只能從愛國”“敬業(yè)”“誠信”“友善四個主題選擇一個,九年級每名學生按要求都上交了一份征文,學校為了解選擇各種征文主題的學生人數(shù),隨機抽取了部分征文進行了調查,根據(jù)調查結果繪制成如下兩幅不完整的統(tǒng)計圖.

(1)求共抽取了多少名學生的征文;

(2)將上面的條形統(tǒng)計圖補充完整;

(3)在扇形統(tǒng)計圖中,選擇愛國主題所對應的圓心角是多少;

(4)如果該校九年級共有1200名學生,請估計選擇以友善為主題的九年級學生有多少名.

查看答案和解析>>

同步練習冊答案