【題目】如圖,扇形OAB中,∠AOB=60°,扇形半徑為4,點C在 上,CD⊥OA,垂足為點D,當(dāng)△OCD的面積最大時,圖中陰影部分的面積為

【答案】2π﹣4
【解析】解:∵OC=4,點C在 上,CD⊥OA, ∴DC= =
∴SOCD= OD
= OD2(16﹣OD2)=﹣ OD4+4OD2=﹣ (OD2﹣8)2+16
∴當(dāng)OD2=8,即OD=2 時△OCD的面積最大,
∴DC= = =2 ,
∴∠COA=45°,
∴陰影部分的面積=扇形AOC的面積﹣△OCD的面積= ×2 ×2 =2π﹣4,
所以答案是:2π﹣4.
【考點精析】解答此題的關(guān)鍵在于理解二次函數(shù)的最值的相關(guān)知識,掌握如果自變量的取值范圍是全體實數(shù),那么函數(shù)在頂點處取得最大值(或最小值),即當(dāng)x=-b/2a時,y最值=(4ac-b2)/4a,以及對勾股定理的概念的理解,了解直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明和小軍兩人一起做游戲,游戲規(guī)則如下:每人從1,2,…,8中任意選擇一個數(shù)字,然后兩人各轉(zhuǎn)動一次如圖所示的轉(zhuǎn)盤(轉(zhuǎn)盤被分為面積相等的四個扇形),兩人轉(zhuǎn)出的數(shù)字之和等于誰事先選擇的數(shù),誰就獲勝;若兩人轉(zhuǎn)出的數(shù)字之和不等于他們各自選擇的數(shù),就在做一次上述游戲,直至決出勝負(fù).若小軍事先選擇的數(shù)是5,用列表或畫樹狀圖的方法求他獲勝的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列四組線段中,可以組成直角三角形的是( 。

A. 4,5,6 B. 3,4,5 C. 5,6,7 D. 1,,3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市團(tuán)委舉行以我的中國夢為主題的知識競賽,甲、乙兩所學(xué)校的參賽人數(shù)相等,比賽結(jié)束后,發(fā)現(xiàn)學(xué)生成績分別為70分,80分,90分,100分,并根據(jù)統(tǒng)計數(shù)據(jù)繪制了如圖不完整的統(tǒng)計圖表:

乙校成績統(tǒng)計表

分?jǐn)?shù)

人數(shù)

70

7

80

______

90

1

100

8

乙學(xué)校的參賽人數(shù)是______

在圖中,“80所在扇形的圓心角度數(shù)為______;

請你將圖補充完整;

求乙校成績的平均分.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線y=﹣x+4與x軸、y軸分別交于點A、B,拋物線y=﹣ (x﹣m)2+n的頂點P在直線y=﹣x+4上,與y軸交于點C(點P、C不與點B重合),以BC為邊作矩形BCDE,且CD=2,點P、D在y軸的同側(cè).

(1)n=(用含m的代數(shù)式表示),點C的縱坐標(biāo)是(用含m的代數(shù)式表示);
(2)當(dāng)點P在矩形BCDE的邊DE上,且在第一象限時,求拋物線對應(yīng)的函數(shù)解析式;
(3)直接寫出矩形BCDE有兩個頂點落在拋物線上時m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,,,都是正三角形,邊長分別為2,,,且BO,都在x軸上,點A,,從左至右依次排列在x軸上方,若點BO中點,點中點,,且B,則點的坐標(biāo)是  

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,菱形ABCD的頂點A的坐標(biāo)為(2,0),點B的坐標(biāo)為(0,1),點C在第一象限,對角線BD與x軸平行.直線y=x+4與x軸、y軸分別交于點E,F(xiàn).將菱形ABCD沿x軸向左平移k個單位,當(dāng)點C落在EOF的內(nèi)部時(不包括三角形的邊),k的值可能是( )

A.2 B.3 C.4 D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ABC=90°,C=30°,AC=12cm,點E從點A出發(fā)沿AB以每秒lcm的速度向點B運動,同時點D從點C出發(fā)沿CA以每秒2cm的速度向點A運動,運動時間為t秒(0<t<6),過點DDFBC于點F.

(I)試用含t的式子表示AE、AD、DF的長;

(Ⅱ)如圖①,連接EF,求證:四邊形AEFD是平行四邊形;

(Ⅲ)如圖②,連接DE,當(dāng)t為何值時,四邊形EBFD是矩形?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:

(1)÷×; (2)( 2);

(3)(2)2017×(2+)20162()0 (4)(a2b)÷()()

查看答案和解析>>

同步練習(xí)冊答案