【題目】已知:如圖,在△ABC中,AB=AC,點P是底邊BC上一點且滿足PA=PB,⊙O是△PAB的外接圓,過點P作PD∥AB交AC于點D.
(1)求證:PD是⊙O的切線;
(2)若BC=8,tan∠ABC=,求⊙O的半徑.
【答案】(1)證明見解析;(2)⊙O的半徑是.
【解析】(1)先根據(jù)圓的性質(zhì)得:,由垂徑定理可得:OP⊥AB,根據(jù)平行線可得:OP⊥PD,所以PD是⊙O的切線;
(2)如圖2,作輔助線,構(gòu)建直角三角形,根據(jù)三角函數(shù)設(shè)CG=x,BG=2x,利用勾股定理計算x=,設(shè)AC=a,則AB=a,AG=﹣a,在Rt△ACG中,由勾股定理列方程可得a的值,同理設(shè)⊙O的半徑為r,同理列方程可得r的值.
(1)如圖1,連接OP,
∵PA=PB,
∴,
∴OP⊥AB,
∵PD∥AB,
∴OP⊥PD,
∴PD是⊙O的切線;
(2)如圖2,過C作CG⊥BA,交BA的延長線于G,
Rt△BCG中,tan∠ABC=,
設(shè)CG=x,BG=2x,
∴BC=x,
∵BC=8,即x=8,
x=,
AC=a,則AB=a,AG=﹣a,
在Rt△ACG中,由勾股定理得:AG2+CG2=AC2,
∴ (﹣a)2+()2=a2,
a=2,
∴AB=2,BE=,
Rt△BEP中,同理可得:PE=,
設(shè)⊙O的半徑為r,則OB=r,OE=r﹣,
由勾股定理得:r2=(r-)2+()2,
r=,
答:⊙O的半徑是.
科目:初中數(shù)學 來源: 題型:
【題目】下列語句:①-1是1的平方根。②帶根號的數(shù)都是無理數(shù)。③-1的立方根是-1。④的立方根是2。⑤(-2)2的算術(shù)平方根是2。⑥-125的立方根是±5。⑦有理數(shù)和數(shù)軸上的點一一對應。其中正確的有( )
A. 2個B. 3個C. 4個D. 5個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將矩形ABCD的四個角向內(nèi)折起,恰好拼成一個無縫隙無重疊的四邊形EFGH,EH=12厘米,EF=16厘米,則邊AD的長是( )
A. 12厘米 B. 16厘米 C. 20厘米 D. 28厘米
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,等腰直角三角形OAA1的直角邊OA在x軸上,點A1在第一象限,且OA=1,以點A1為直角頂點,OA1為一直角邊作等腰直角三角形OA1A2,再以點A2為直角頂點,OA2為直角邊作等腰直角三角形OA2A3…依此規(guī)律,則點A2018的坐標是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,拋物線y=ax2+bx+c與坐標軸分別交于點A(0,6),B(6,0),C(﹣2,0),點P是線段AB上方拋物線上的一個動點.
(1)求拋物線的解析式;
(2)當點P運動到什么位置時,△PAB的面積有最大值?
(3)過點P作x軸的垂線,交線段AB于點D,再過點P做PE∥x軸交拋物線于點E,連結(jié)DE,請問是否存在點P使△PDE為等腰直角三角形?若存在,求出點P的坐標;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在圖中網(wǎng)格上按要求畫出圖形,并回答問題:
(1)如果將三角形平移,使得點平移到圖中點位置,點、點的對應點分別為點、點,請畫出三角形;
(2)畫出三角形關(guān)于點成中心對稱的三角形.
(3)三角形與三角形______(填“是”或“否”)關(guān)于某個點成中心對稱?如果是,請在圖中畫出這個對稱中心,并記作點.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,點A是反比例函數(shù)y=(x>0,m>1)圖象上一點,點A的橫坐標為m,點B(0,﹣m)是y軸負半軸上的一點,連接AB,AC⊥AB,交y軸于點C,延長CA到點D,使得AD=AC,過點A作AE平行于x軸,過點D作y軸平行線交AE于點E.
(1)當m=3時,求點A的坐標;
(2)DE= ,設(shè)點D的坐標為(x,y),求y關(guān)于x的函數(shù)關(guān)系式和自變量的取值范圍;
(3)連接BD,過點A作BD的平行線,與(2)中的函數(shù)圖象交于點F,當m為何值時,以A、B、D、F為頂點的四邊形是平行四邊形?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(2017浙江省湖州市)如圖,已知∠AOB=30°,在射線OA上取點O1,以O1為圓心的圓與OB相切;在射線O1A上取點O2,以O2為圓心,O2O1為半徑的圓與OB相切;在射線O2A上取點O3,以O3為圓心,O3O2為半徑的圓與OB相切;…;在射線O9A上取點O10,以O10為圓心,O10O9為半徑的圓與OB相切.若⊙O1的半徑為1,則⊙O10的半徑長是______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com