【題目】如圖,四邊形ABCD內(nèi)接于⊙O,C為 的中點(diǎn),若∠CBD=30°,⊙O的半徑為12.
(1)求∠BAD的度數(shù);
(2)求扇形OCD的面積.
【答案】
(1)解:∵C是為 的中點(diǎn),
∴ =2 ,
∴∠BAD=∠COD,
∵ = ,
∴∠COD=2∠CBD,
∴∠BAD=2∠CBD,
∵∠CBD=30°,
∴∠BAD=60°
(2)解:∵ = ,
∴∠COD=2∠CBD,
∵∠CBD=30°,
∴∠COD=60°,
則S扇形OCD= =24π.
【解析】(1)根據(jù)題意可得 =2 ,進(jìn)而可得∠BAD=∠COD,∠BAD=2∠CBD,再由條件∠CBD=30°可得∠BAD的度數(shù);(2)根據(jù)圓周角定理可得∠COD=60°,再根據(jù)扇形的面積公式可得答案.
【考點(diǎn)精析】掌握圓內(nèi)接四邊形的性質(zhì)和扇形面積計算公式是解答本題的根本,需要知道把圓分成n(n≥3):1、依次連結(jié)各分點(diǎn)所得的多邊形是這個圓的內(nèi)接正n邊形2、經(jīng)過各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的多邊形是這個圓的外切正n邊形;在圓上,由兩條半徑和一段弧圍成的圖形叫做扇形;扇形面積S=π(R2-r2).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:
(1)試驗觀察:
如果經(jīng)過兩點(diǎn)畫直線,那么:
第①組最多可以畫____條直線;
第②組最多可以畫____條直線;
第③組最多可以畫____條直線.
(2)探索歸納:
如果平面上有n(n≥3)個點(diǎn),且任意3個點(diǎn)均不在1條直線上,那么經(jīng)過兩點(diǎn)最多可以畫____條直線.(用含n的式子表示)
(3)解決問題:
某班45名同學(xué)在畢業(yè)后的一次聚會中,若每兩人握1次手問好,那么共握____次手.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,邊長為4的正方形ABCD內(nèi)接于點(diǎn)O,點(diǎn)E是 上的一動點(diǎn)(不與A、B重合),點(diǎn)F是 上的一點(diǎn),連接OE、OF,分別與AB、BC交于點(diǎn)G,H,且∠EOF=90°,有以下結(jié)論: ① = ;
②△OGH是等腰三角形;
③四邊形OGBH的面積隨著點(diǎn)E位置的變化而變化;
④△GBH周長的最小值為4+ .
其中正確的是(把你認(rèn)為正確結(jié)論的序號都填上).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】Rt△ABC中,∠C=90°,AC=8cm,BC=6cm,以點(diǎn)C為圓心5cm為半徑的圓與直線AB的位置關(guān)系是( )
A.相交
B.相切
C.相離
D.無法確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)B、C、D都在半徑為4的⊙O上,過點(diǎn)C作AC∥BD交OB的延長線于點(diǎn)A,連接CD,已知∠CDB=∠OBD=30°.
(1)求證:AC是⊙O的切線;
(2)求弦BD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:在x軸的上方,直角∠BOA繞原點(diǎn)O順時針方向旋轉(zhuǎn),若∠BOA的兩邊分別與函數(shù)y=﹣ 、y= 的圖像交于B、A兩點(diǎn),則tanA= .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com