【題目】如圖,OM是∠AOC的平分線,ON是∠BOC的平分線.
(1)如圖1,當(dāng)∠AOB是直角,∠BOC=60°時(shí),∠MON的度數(shù)是多少?
(2)如圖2,當(dāng)∠AOB=α,∠BOC=60°時(shí),猜想∠MON與α的數(shù)量關(guān)系;
(3)如圖3,當(dāng)∠AOB=α,∠BOC=β時(shí),猜想∠MON與α、β有數(shù)量關(guān)系嗎?如果有,指出結(jié)論并說明理由.
【答案】(1)45°;(2)∠MON=α.(3)∠MON=α
【解析】
試題分析:(1)求出∠AOC度數(shù),求出∠MOC和∠NOC的度數(shù),代入∠MON=∠MOC﹣∠NOC求出即可;
(2)求出∠AOC度數(shù),求出∠MOC和∠NOC的度數(shù),代入∠MON=∠MOC﹣∠NOC求出即可;
(3)求出∠AOC度數(shù),求出∠MOC和∠NOC的度數(shù),代入∠MON=∠MOC﹣∠NOC求出即可.
解:(1)如圖1,∵∠AOB=90°,∠BOC=60°,
∴∠AOC=90°+60°=150°,
∵OM平分∠AOC,ON平分∠BOC,
∴∠MOC=∠AOC=75°,∠NOC=∠BOC=30°
∴∠MON=∠MOC﹣∠NOC=45°.
(2)如圖2,∠MON=α,
理由是:∵∠AOB=α,∠BOC=60°,
∴∠AOC=α+60°,
∵OM平分∠AOC,ON平分∠BOC,
∴∠MOC=∠AOC=α+30°,∠NOC=∠BOC=30°
∴∠MON=∠MOC﹣∠NOC=(α+30°)﹣30°=α.
(3)如圖3,∠MON=α,與β的大小無關(guān).
理由:∵∠AOB=α,∠BOC=β,
∴∠AOC=α+β.
∵OM是∠AOC的平分線,ON是∠BOC的平分線,
∴∠MOC=∠AOC=(α+β),
∠NOC=∠BOC=β,
∴∠AON=∠AOC﹣∠NOC=α+β﹣β=α+β.
∴∠MON=∠MOC﹣∠NOC
=(α+β)﹣β=α
即∠MON=α.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】多邊形的內(nèi)角和隨著邊數(shù)的變化而變化.設(shè)多邊形的邊數(shù)為n,內(nèi)角和為N,則變量N與n之間的關(guān)系可以表示為N=(n-2)180°.例如:如圖四邊形ABCD的內(nèi)角和:N=∠A+∠B+∠C+∠D=(4-2)×180°=360°問:(1)利用這個(gè)關(guān)系式計(jì)算五邊形的內(nèi)角和;(2)當(dāng)一個(gè)多邊形的內(nèi)角和N=720°時(shí),求其邊數(shù)n.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算及解方程:
(1)-4-28-(-19)+(-24)
(2)-12-(-2)3-2(-3)
(3)(a+3b)-(a-b)
(4)3(m2-2n2)-2(m2-3n2)
(5)2(2x﹣3)﹣3=2﹣3(x﹣1)
(6)-1=
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】同學(xué)們都知道,|2-(-1)|表示2與-1的差的絕對值,實(shí)際上位可理解為在數(shù)軸上正數(shù)2對應(yīng)的點(diǎn)與負(fù)數(shù)一1對應(yīng)的點(diǎn)之間的距離,試探索:
(1)|2-(-1)|=______;如果|x-1|=2,則x=______.
(2)求|x-2|+|x-4|的最小值,并求此時(shí)x的取值范圍;
(3)由以上探素已知(|x-2|+|x+4|)(|y-1|+|y-6|)=10,求x+y的最大值與最小值;
(4)由以上探索及猜想,計(jì)算|x-1|+|x-2|+|x-3|+…+|x-2017|+|x-2018|的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在△ABC中,是邊上的中點(diǎn),,請你添加一個(gè)條件,使成立.你添加的條件是_______________(不再添加輔助線和字母).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用“☆”定義一種新運(yùn)算:對于任意有理數(shù)a和b,
規(guī)定a ☆. 如:1☆.
(1)求(﹣2)☆5的值;
(2)若 ☆3=8,求a的值;
(3)若m=2☆x, n=(-1-x)☆3(其中x為有理數(shù)),試比較大小m n(填“>”、“<”或“=”).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在長方形ABCD中,AB=8cm,BC=6cm.點(diǎn)E是CD邊上的一點(diǎn),且DE=2cm,動(dòng)點(diǎn)P從A點(diǎn)出發(fā),以2cm/s的速度沿A→B→C→E運(yùn)動(dòng),最終到達(dá)點(diǎn)E.當(dāng)△APE的面積等于20cm2時(shí),則點(diǎn)P運(yùn)動(dòng)的時(shí)間為___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一條不完整的數(shù)軸上從左到右有點(diǎn)A,B,C,其中AB=2,BC=1,如圖所示.設(shè)點(diǎn)A,B,C所對應(yīng)數(shù)的和是p.
(1)若以B為原點(diǎn),寫出點(diǎn)A,C所對應(yīng)的數(shù),并計(jì)算p的值;若以C為原點(diǎn),p又是多少?
(2)若原點(diǎn)O在圖中數(shù)軸上點(diǎn)C的右邊,且CO=28,求p.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,一個(gè)四邊形紙片ABCD,∠B=∠D=90°,把紙片按如圖所示折疊,使點(diǎn)B落在AD邊上的B'點(diǎn),AE是折痕。
(1)試判斷B'E與DC的位置關(guān)系并說明理由。
(2)如果∠C=130°,求∠AEB的度數(shù)。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com