【題目】如圖,已知⊙O的半徑為2,A為⊙O外一點,過點A作⊙O的一條切線AB,切點是B,AO的延長線交⊙O于點C,若∠BAC=30°,則劣弧 的長為 .
【答案】
【解析】解:∵AB是⊙O切線,
∴AB⊥OB,
∴∠ABO=90°,
∵∠A=30°,
∴∠AOB=90°﹣∠A=60°,
∴∠BOC=120°,
∴ 的長為 = .
所以答案是 .
【考點精析】關于本題考查的切線的性質(zhì)定理和弧長計算公式,需要了解切線的性質(zhì):1、經(jīng)過切點垂直于這條半徑的直線是圓的切線2、經(jīng)過切點垂直于切線的直線必經(jīng)過圓心3、圓的切線垂直于經(jīng)過切點的半徑;若設⊙O半徑為R,n°的圓心角所對的弧長為l,則l=nπr/180;注意:在應用弧長公式進行計算時,要注意公式中n的意義.n表示1°圓心角的倍數(shù),它是不帶單位的才能得出正確答案.
科目:初中數(shù)學 來源: 題型:
【題目】一個袋中有3張形狀大小完全相同的卡片,編號為1,2,3,先任取一張,將其編號記為m,再從剩下的兩張中任取一張,將其編號記為n.
(1)請用樹狀圖或者列表法,表示事件發(fā)生的所有可能情況;
(2)求關于x的方程x2+mx+n=0有兩個不相等實數(shù)根的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ACB和△DCE均為等腰三角形,點A、D、E在同一條直線上,BC和AE相交于點O,連接BE,若∠CAB=∠CBA=∠CDE=∠CED=50°。
(1)求證:AD=BE;
(2)求∠AEB!
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,隨著我市鐵路建設進程的加快,現(xiàn)規(guī)劃從A地到B地有一條筆直的鐵路通過,但在附近的C處有一大型油庫,現(xiàn)測得油庫C在A地的北偏東60°方向上,在B地的西北方向上,AB的距離為250( +1)米.已知在以油庫C為中心,半徑為200米的范圍內(nèi)施工均會對油庫的安全造成影響.問若在此路段修建鐵路,油庫C是否會受到影響?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y1=﹣ x+2與x軸,y軸分別交于B,C,拋物線y=ax2+bx+c(a≠0)經(jīng)過點A,B,C,點A坐標為(﹣1,0).
(1)求拋物線的解析式;
(2)拋物線的對稱軸與x軸交于點D,連接CD,點P是直線BC上方拋物線上的一動點(不與B,C重合),當點P運動到何處時,四邊形PCDB的面積最大?求出此時四邊形PCDB面積的最大值和點P坐標;
(3)在拋物線上的對稱軸上:是否存在一點M,使|MA﹣MC|的值最大;是否存在一點N,使△NCD是以CD為腰的等腰三角形?若存在,直接寫出點M,點N的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,△ABC中,∠B=90°,AB=6cm,BC=8cm.
(1)點P從點A開始沿AB邊向B以1cm/s的速度移動,點Q從B點開始沿BC邊向點C以2cm/s的速度移動.如果P,Q分別從A,B同時出發(fā),經(jīng)過幾秒,使△PBQ的面積等于8cm2?
(2)點P從點A開始沿AB邊向B以1cm/s的速度移動,點Q從B點開始沿BC邊向點C以2cm/s的速度移動.如果P,Q分別從A,B同時出發(fā),線段PQ能否將△ABC分成面積相等的兩部分?若能,求出運動時間;若不能說明理由.
(3)若P點沿射線AB方向從A點出發(fā)以1cm/s的速度移動,點Q沿射線CB方向從C點出發(fā)以2cm/s的速度移動,P,Q同時出發(fā),問幾秒后,△PBQ的面積為1?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1是一個長為2a ,寬為2b的長方形,沿圖中虛線剪開分成四塊小長方形,然后按如圖2的形狀拼成一個正方形.
(1)圖2的陰影部分的正方形的邊長是 ______.
(2)用兩種不同的方法求圖中陰影部分的面積.
(方法1)= _____________;
(方法2)=______________;
(3)觀察如圖2,寫出(a+b)2,(a-b)2,ab這三個代數(shù)式之間的等量關系.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com