【題目】周末,小華騎自行車從家出發(fā)到植物園玩,從家出發(fā) 1 小時(shí)后,因自行車損壞修理了一段時(shí)間后,按原速前往植物園,小華從家出發(fā) 1 小時(shí) 50 分后,爸爸從家出發(fā)騎摩托車沿相同路線前往植物園,如圖是他們家的路程 ykm)與小華離家的時(shí)間 xh)的函數(shù)圖象,已知爸爸騎摩托車的速度是小華騎車速度的 2 倍,若爸爸比小華早 10 分達(dá)到植物園,則小華家到植物園的路程是_____km

【答案】45

【解析】

設(shè)小華家到植物園的路程為Skm,根據(jù)一次函數(shù)圖象可知小華騎車的速度,結(jié)合爸爸與小華速度之間的關(guān)系可得出爸爸的速度,再根據(jù)時(shí)間的關(guān)系式列出關(guān)于S的一元一次方程,解方程即可得出結(jié)論.

解:設(shè)小華家到植物園的路程為Skm,

小華騎車的速度為:15÷115km/h),

爸爸騎摩托車的速度為:15×230km/h),

依題意得:+0.5+1,

解得:S45

故答案為:45

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,AB=BD=4,EAB的中點(diǎn),PAC上一個(gè)動(dòng)點(diǎn),則EP+BP的最小值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,菱形OABC的頂點(diǎn)A的坐標(biāo)為(4,3),點(diǎn)D是邊OC上的一點(diǎn),點(diǎn)E在直線OB上,連接DE、CE,則DE+CE的最小值為( 。

A. 5B. +1C. 2D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小甲蟲從某點(diǎn)O出發(fā),在一條直線上來回爬行,假定向右爬行的路程記為正數(shù),向左爬行的路程為負(fù)數(shù),爬過的各段路程依次為:(單位:厘米)

+46,8,+1210,+11,3

(1)小甲蟲最后是否回到了出發(fā)點(diǎn)O?

(2)小甲蟲離開點(diǎn)O的最遠(yuǎn)距離是多少厘米?

(3)在爬行過程中,如果每爬1厘米獎(jiǎng)勵(lì)三粒芝麻,那么小甲蟲一共得到多少粒芝麻?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】認(rèn)真閱讀下面的材料,完成有關(guān)問題:

材料 在學(xué)習(xí)絕對值時(shí),老師教過我們絕對值的幾何含義,如|53|表示5,3在數(shù)軸上對應(yīng)的兩點(diǎn)之間的距離;|53||5(3)|,所以|53|表示5,-3在數(shù)軸上對應(yīng)的兩點(diǎn)之間的距離;|5||50|,所以|5|表示5在數(shù)軸上對應(yīng)的點(diǎn)到原點(diǎn)的距離.一般地,點(diǎn)A,B在數(shù)軸上分別表示有理數(shù)a,b,那么A,B之間的距離可表示為|ab|.

(1)點(diǎn)A,B,C在數(shù)軸上分別表示有理數(shù)-5,-1, 3,那么AB的距離是 AC的距離是_____.(直接填最后結(jié)果)

(2)點(diǎn)A,BC在數(shù)軸上分別表示有理數(shù)x,-2,1,那么AB的距離與AC的距離之和可表示為 (用含絕對值的式子表示)

(3)利用數(shù)軸探究:

設(shè)|x3||x1|p,當(dāng)x的值取在不小于-1 且不大于3的范圍時(shí),p的值是不變的,而且是p的最小值,這個(gè)最小值是_____

|x||x2|的最小值以及此時(shí)x的取值范圍?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:

1)(+17)+(-12);

210+(―)―6―(―0.25);

3)(48

4)|-54|-5×(-221÷(-

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,PO外一點(diǎn),PAPB分別切OA,BCDO于點(diǎn)E,分別交PAPB于點(diǎn)C,D.若PA=5,則PCD的周長和COD分別為( 。

A. 5, 90°+P B. 7,90°+ C. 10,90°-P D. 1090°+P

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖 1,直線 y=﹣x+6 y 軸于點(diǎn) A,與 x 軸交于點(diǎn) D,直線 AB x 軸于點(diǎn) BAOB 沿直線 AB 折疊,點(diǎn) O 恰好落在直線 AD 上的點(diǎn) C 處.

1)求點(diǎn) B 的坐標(biāo);

2)如圖 2,直線 AB 上的兩點(diǎn) FG,DFG 是以 FG 為斜邊的等腰直角三角形,求點(diǎn) G 的坐標(biāo);

3)如圖 3,點(diǎn) P 是直線 AB 上一點(diǎn),點(diǎn) Q 是直線 AD 上一點(diǎn),且 PQ 均在第四象限,點(diǎn) E x 軸上一點(diǎn),若四邊形 PQDE 為菱形,求點(diǎn) E 的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面材料,并回答下列問題:

小明遇到這樣一個(gè)問題,如圖,在中,分別交于點(diǎn),交于點(diǎn).已知,求的值.

小明發(fā)現(xiàn),過點(diǎn),交的延長線于點(diǎn),構(gòu)造,經(jīng)過推理和計(jì)算能夠使問題得到解決(如圖)

請你回答:

1)證明:;

2)求出的值;

3)參考小明思考問題的方法,解決問題;

如圖,已知和矩形交于點(diǎn).的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案