【題目】已知二次函數(shù)y1=x2+2x+m﹣5.
(1)如果該二次函數(shù)的圖象與x軸有兩個(gè)交點(diǎn),求m的取值范圍;
(2)如果該二次函數(shù)的圖象與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,且點(diǎn)B的坐標(biāo)為(1,0),求它的表達(dá)式和點(diǎn)C的坐標(biāo);
(3)如果一次函數(shù)y2=px+q的圖象經(jīng)過(guò)點(diǎn)A、C,請(qǐng)根據(jù)圖象直接寫(xiě)出y2<y1時(shí),x的取值范圍.

【答案】
(1)解:∵二次函數(shù)y1=x2+2x+m﹣5的圖象與x軸有兩個(gè)交點(diǎn),

∴△>0,

∴22﹣4(m﹣5)>0,

解得:m<6


(2)解:∵二次函數(shù)y1=x2+2x+m﹣5的圖象經(jīng)過(guò)點(diǎn)(1,0),

∴1+2+m﹣5=0,

解得:m=2,

∴它的表達(dá)式是y1=x2+2x﹣3,

∵當(dāng)x=0時(shí),y=﹣3,

∴C(0,﹣3)


(3)解:由圖象可知:當(dāng)y2<y1時(shí),x的取值范圍是x<﹣3或x>0.


【解析】(1)根據(jù)該二次函數(shù)的圖象與x軸有兩個(gè)交點(diǎn)可知判別式>0,進(jìn)而可求出m的范圍;
(2)根據(jù)該二次函數(shù)的圖象過(guò)點(diǎn)B(1,0),從而求出m的值,可得它的表達(dá)式,再由x=0,求得y的值,則可得C的坐標(biāo);
(3)根據(jù)題意畫(huà)出圖象,再由圖象可直接求得.
【考點(diǎn)精析】掌握拋物線與坐標(biāo)軸的交點(diǎn)是解答本題的根本,需要知道一元二次方程的解是其對(duì)應(yīng)的二次函數(shù)的圖像與x軸的交點(diǎn)坐標(biāo).因此一元二次方程中的b2-4ac,在二次函數(shù)中表示圖像與x軸是否有交點(diǎn).當(dāng)b2-4ac>0時(shí),圖像與x軸有兩個(gè)交點(diǎn);當(dāng)b2-4ac=0時(shí),圖像與x軸有一個(gè)交點(diǎn);當(dāng)b2-4ac<0時(shí),圖像與x軸沒(méi)有交點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)解方程:

(2)計(jì)算:3a(2a2-9a+3)-4a(2a-1)

(3)計(jì)算:()×()+|-1|+(5-2π)0

(4)先化簡(jiǎn),再求值:(xy2+x2y),其中x=,y=.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,⊙O的半徑為1,P是坐標(biāo)系內(nèi)任意一點(diǎn),點(diǎn)P到⊙O的距離SP的定義如下:若點(diǎn)P與圓心O重合,則SP為⊙O的半徑長(zhǎng);若點(diǎn)P與圓心O不重合,作射線OP交⊙O于點(diǎn)A,則SP為線段AP的長(zhǎng)度.
圖1為點(diǎn)P在⊙O外的情形示意圖.

(1)若點(diǎn)B(1,0),C(1,1),D(0, ),則SB=;SC=;SD=;
(2)若直線y=x+b上存在點(diǎn)M,使得SM=2,求b的取值范圍;
(3)已知點(diǎn)P,Q在x軸上,R為線段PQ上任意一點(diǎn).若線段PQ上存在一點(diǎn)T,滿(mǎn)足T在⊙O內(nèi)且ST≥SR , 直接寫(xiě)出滿(mǎn)足條件的線段PQ長(zhǎng)度的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=﹣2x的圖象與反比例函數(shù)y= 的圖象交于點(diǎn)A(﹣1,n).

(1)求反比例函數(shù)y= 的解析式;
(2)若P是坐標(biāo)軸上一點(diǎn),且滿(mǎn)足PA=OA,直接寫(xiě)出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為發(fā)展校園足球運(yùn)動(dòng),某縣城區(qū)四校決定聯(lián)合購(gòu)買(mǎi)一批足球運(yùn)動(dòng)裝備,市場(chǎng)調(diào)查發(fā)現(xiàn):甲、乙兩商場(chǎng)以同樣的價(jià)格出售同種品牌的足球隊(duì)服和足球,已知每套隊(duì)服比每個(gè)足球多50元,兩套隊(duì)服與三個(gè)足球的費(fèi)用相等,經(jīng)洽談,甲商場(chǎng)優(yōu)惠方案是:每購(gòu)買(mǎi)十套隊(duì)服,送一個(gè)足球;乙商場(chǎng)優(yōu)惠方案是:若購(gòu)買(mǎi)隊(duì)服超過(guò)80套,則購(gòu)買(mǎi)足球打八折.

(1)求每套隊(duì)服和每個(gè)足球的價(jià)格是多少?

(2)若城區(qū)四校聯(lián)合購(gòu)買(mǎi)100套隊(duì)服和a個(gè)足球,請(qǐng)用含a的式子分別表示出到甲商場(chǎng)和乙商場(chǎng)購(gòu)買(mǎi)裝備所花的費(fèi)用;

(3)假如你是本次購(gòu)買(mǎi)任務(wù)的負(fù)責(zé)人,你認(rèn)為到哪家商場(chǎng)購(gòu)買(mǎi)比較合算?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,對(duì)于點(diǎn)P(x,y)和Q(x,y′),給出如下定義:
如果y′= ,那么稱(chēng)點(diǎn)Q為點(diǎn)P的“關(guān)聯(lián)點(diǎn)”.
例如:點(diǎn)(5,6)的“關(guān)聯(lián)點(diǎn)”為點(diǎn)(5,6),點(diǎn)(﹣5,6)的“關(guān)聯(lián)點(diǎn)”
為點(diǎn)(﹣5,﹣6).
(1)①點(diǎn)(2,1)的“關(guān)聯(lián)點(diǎn)”為;②如果點(diǎn)A(3,﹣1),B(﹣1,3)的“關(guān)聯(lián)點(diǎn)”中有一個(gè)在函數(shù) 的圖象上,那么這個(gè)點(diǎn)是(填“點(diǎn)A”或“點(diǎn)B”).
(2)①如果點(diǎn)M*(﹣1,﹣2)是一次函數(shù)y=x+3圖象上點(diǎn)M的“關(guān)聯(lián)點(diǎn)”,
那么點(diǎn)M的坐標(biāo)為;②如果點(diǎn)N*(m+1,2)是一次函數(shù)y=x+3圖象上點(diǎn)N的“關(guān)聯(lián)點(diǎn)”,求點(diǎn)N的坐標(biāo)
(3)如果點(diǎn)P在函數(shù)y=﹣x2+4(﹣2<x≤a)的圖象上,其“關(guān)聯(lián)點(diǎn)”Q的縱坐標(biāo)
y′的取值范圍是﹣4<y′≤4,那么實(shí)數(shù)a的取值范圍是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知如圖,△ABC中,AE交BC于點(diǎn)D,∠C=∠E,AD:DE=3: 5,AE=8,BD=4,求DC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀:已知a+b=﹣4,ab=3,求a2+b2的值.

解:∵a+b=﹣4,ab=3,

a2+b2=(a+b)2﹣2ab=(﹣4)2﹣2×3=10.

請(qǐng)你根據(jù)上述解題思路解答下面問(wèn)題:

(1)已知a﹣b=﹣3,ab=﹣2,求(a+b)(a2﹣b2)的值.

(2)已知a﹣c﹣b=﹣10,(a﹣b)c=﹣12,求(a﹣b)2+c2的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在 數(shù)軸上對(duì)應(yīng)的數(shù)分別用表示,且.是數(shù)軸的一動(dòng)點(diǎn).

⑴在數(shù)軸上標(biāo)出的位置,并求出之間的距離;

⑵數(shù)軸上一點(diǎn)點(diǎn)24個(gè)單位的長(zhǎng)度,其對(duì)應(yīng)的數(shù)滿(mǎn)足,當(dāng)點(diǎn)滿(mǎn)足時(shí),求點(diǎn)對(duì)應(yīng)的數(shù).

⑶動(dòng)點(diǎn)從原點(diǎn)開(kāi)始第一次向左移動(dòng)1個(gè)單位,第二次向右移動(dòng)3個(gè)單位長(zhǎng)度,第三次向左移動(dòng)5個(gè)單位長(zhǎng)度,第四次向右移動(dòng)7個(gè)單位長(zhǎng)度,……點(diǎn)能移動(dòng)到與重合的位置嗎?若能,請(qǐng)?zhí)骄康趲状我苿?dòng)時(shí)重合;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案