【題目】(閱讀理解)

點(diǎn)A、B、C為數(shù)軸上三點(diǎn),如果點(diǎn)CA、B之間且到A的距離是點(diǎn)CB的距離3倍,那么我們就稱點(diǎn)C{ A,B }的奇點(diǎn).

例如,如圖1,點(diǎn)A表示的數(shù)為﹣3,點(diǎn)B表示的數(shù)為1.表示0的點(diǎn)C到點(diǎn)A的距離是3,到點(diǎn)B的距離是1,那么點(diǎn)C{ A,B }的奇點(diǎn);又如,表示﹣2的點(diǎn)D到點(diǎn)A的距離是1,到點(diǎn)B的距離是3,那么點(diǎn)D就不是{A,B }的奇點(diǎn),但點(diǎn)D{B,A}的奇點(diǎn).

(知識(shí)運(yùn)用)

如圖2,M、N為數(shù)軸上兩點(diǎn),點(diǎn)M所表示的數(shù)為﹣3,點(diǎn)N所表示的數(shù)為5.

(1)數(shù)   所表示的點(diǎn)是{ M,N}的奇點(diǎn);數(shù)   所表示的點(diǎn)是{N,M}的奇點(diǎn);

(2)如圖3,A、B為數(shù)軸上兩點(diǎn),點(diǎn)A所表示的數(shù)為﹣50,點(diǎn)B所表示的數(shù)為30.現(xiàn)有一動(dòng)點(diǎn)P從點(diǎn)B出發(fā)向左運(yùn)動(dòng),到達(dá)點(diǎn)A停止.P點(diǎn)運(yùn)動(dòng)到數(shù)軸上的什么位置時(shí),P、AB中恰有一個(gè)點(diǎn)為其余兩點(diǎn)的奇點(diǎn)?

【答案】(1)3,-1 (2) -30, 10

【解析】

(1)根據(jù)定義發(fā)現(xiàn):奇點(diǎn)表示的數(shù)到{M,N}中,前面的點(diǎn)M是到后面的數(shù)N的距離的3倍,從而得出結(jié)論;
根據(jù)定義發(fā)現(xiàn):奇點(diǎn)表示的數(shù)到{N,M}中,前面的點(diǎn)N是到后面的數(shù)M的距離的3倍,從而得出結(jié)論;
(2)點(diǎn)A到點(diǎn)B的距離為6,由奇點(diǎn)的定義可知:分兩種情況列式:①PB=3PA;②PA=3PB;可以得出結(jié)論.

(1)5-(-3)=8,

8÷(3+1)=2,

5-2=3,

-3+2=-1.

故表示數(shù)3的點(diǎn)是{M,N}的奇點(diǎn);表示數(shù)-1的點(diǎn)是{N,M}的奇點(diǎn).

(2)30-(-50)=80,

80÷(3+1)=20,

30-20=10,

-50+20=-30.

故點(diǎn)P運(yùn)動(dòng)到數(shù)軸上表示-30和10的點(diǎn)的位置時(shí),P,A,B中恰有一個(gè)點(diǎn)為其余兩點(diǎn)的奇點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】兩個(gè)反比例函數(shù),在第一象限內(nèi)的圖象如圖所示,點(diǎn)P1,P2,P3,…,P2018在反比例函數(shù)圖象上,它們的橫坐標(biāo)分別是,,,…,,縱坐標(biāo)分別是1,3,5,…,共2018個(gè)連續(xù)奇數(shù),過(guò)點(diǎn)P1,P2,P3,…,P2018分別作軸的平行線,與的圖象交點(diǎn)依次是Q1,),Q2,),Q3),…,Q2018,),則=_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】矩形ABCD的兩條對(duì)稱軸為坐標(biāo)軸,點(diǎn)A的坐標(biāo)為(2,1).一張透明紙上畫有一個(gè)點(diǎn)和一條拋物線,平移透明紙,這個(gè)點(diǎn)與點(diǎn)A重合,此時(shí)拋物線的函數(shù)表達(dá)式為y=x2 , 再次平移透明紙,使這個(gè)點(diǎn)與點(diǎn)C重合,則該拋物線的函數(shù)表達(dá)式變?yōu)椋?)
A.y=x2+8x+14
B.y=x2-8x+14
C.y=x2+4x+3
D.y=x2-4x+3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】順次連接對(duì)角線相等的四邊形的四邊中點(diǎn),所得的四邊形一定是____________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】交通工程學(xué)理論把在單向道路上行駛的汽車看成連續(xù)的液體,并用流量、速度、密度三個(gè)概念描述車流的基本特征。其中流量q(輛/小時(shí))指單位時(shí)間內(nèi)通過(guò)道路指定斷面的車輛數(shù);速度v(千米/小時(shí))指通過(guò)道路指定斷面的車輛速度;密度(輛/千米)指通過(guò)道路指定斷面單位長(zhǎng)度內(nèi)的車輛數(shù),為配合大數(shù)據(jù)治堵行動(dòng),測(cè)得某路段流量q與速度v之間的部分?jǐn)?shù)據(jù)如下表:

速度v(千米/小時(shí))

5

10

20

32

40

48

流量q(輛/小時(shí))

550

1000

1600

1792

1600

1152


(1)根據(jù)上表信息,下列三個(gè)函數(shù)關(guān)系式中,刻畫q,v關(guān)系最準(zhǔn)確的是(只需填上正確答案的序號(hào))①
(2)請(qǐng)利用(1)中選取的函數(shù)關(guān)系式分析,當(dāng)該路段的車流速為多少時(shí),流量達(dá)到最大?最大流量是多少?
(3)已知q,v,k滿足 ,請(qǐng)結(jié)合(1)中選取的函數(shù)關(guān)系式繼續(xù)解決下列問(wèn)題:
①市交通運(yùn)行監(jiān)控平臺(tái)顯示,當(dāng) 時(shí)道路出現(xiàn)輕度擁堵,試分析當(dāng)車流密度k在什么范圍時(shí),該路段出現(xiàn)輕度擁堵;
②在理想狀態(tài)下,假設(shè)前后兩車車頭之間的距離d(米)均相等,求流量q最大時(shí)d的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某糧庫(kù)已存有糧食100噸,本周內(nèi)糧庫(kù)進(jìn)出糧食的紀(jì)錄如下(運(yùn)進(jìn)記為正,運(yùn)出記為負(fù)):

(1)通過(guò)計(jì)算,說(shuō)明本周內(nèi)哪天糧庫(kù)剩下的糧食最多?

(2)若運(yùn)進(jìn)的糧食為購(gòu)進(jìn)的,購(gòu)買的價(jià)格為每噸2000元,運(yùn)出的糧食為賣出的,賣出的價(jià)格為每噸2300元,則這周的利潤(rùn)為多少?

(3)若每周平均進(jìn)出的糧食大致相同,則再過(guò)幾周糧庫(kù)存的糧食可達(dá)到200噸?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本題滿分10分)某校八年級(jí)學(xué)生全部參加初二生物地理會(huì)考,從中抽取了部分學(xué)生的生物考試成績(jī),將他們的成績(jī)進(jìn)行統(tǒng)計(jì)后分為A、B、C、D四個(gè)等級(jí),并將統(tǒng)計(jì)結(jié)果繪制成如下的統(tǒng)計(jì)圖,請(qǐng)結(jié)合圖中所給的信息解答下列問(wèn)題:

(1)抽取了__名學(xué)生成績(jī);

(2)請(qǐng)把頻數(shù)分布直方圖補(bǔ)充完整;

(3)扇形統(tǒng)計(jì)圖中A等級(jí)所在的扇形的圓心角度數(shù)是__

(4)若A、B、C三個(gè)等級(jí)為合格,該校初二年級(jí)有900名學(xué)生,估計(jì)全年級(jí)生物合格的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,⊙O是△ABC的外接圓,AB是⊙O的直徑,D為⊙O上一點(diǎn),OD⊥AC,垂足為E,連接BD
(1)求證:BD平分∠ABC;
(2)當(dāng)∠ODB=30°時(shí),求證:BC=OD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形ABCD中,點(diǎn)E是邊AD的中點(diǎn),EC交對(duì)角線于點(diǎn)F,若SDEC=9,則SBCF=(
A.6
B.8
C.10
D.12

查看答案和解析>>

同步練習(xí)冊(cè)答案