【題目】(閱讀理解)
點(diǎn)A、B、C為數(shù)軸上三點(diǎn),如果點(diǎn)C在A、B之間且到A的距離是點(diǎn)C到B的距離3倍,那么我們就稱點(diǎn)C是{ A,B }的奇點(diǎn).
例如,如圖1,點(diǎn)A表示的數(shù)為﹣3,點(diǎn)B表示的數(shù)為1.表示0的點(diǎn)C到點(diǎn)A的距離是3,到點(diǎn)B的距離是1,那么點(diǎn)C是{ A,B }的奇點(diǎn);又如,表示﹣2的點(diǎn)D到點(diǎn)A的距離是1,到點(diǎn)B的距離是3,那么點(diǎn)D就不是{A,B }的奇點(diǎn),但點(diǎn)D是{B,A}的奇點(diǎn).
(知識(shí)運(yùn)用)
如圖2,M、N為數(shù)軸上兩點(diǎn),點(diǎn)M所表示的數(shù)為﹣3,點(diǎn)N所表示的數(shù)為5.
(1)數(shù) 所表示的點(diǎn)是{ M,N}的奇點(diǎn);數(shù) 所表示的點(diǎn)是{N,M}的奇點(diǎn);
(2)如圖3,A、B為數(shù)軸上兩點(diǎn),點(diǎn)A所表示的數(shù)為﹣50,點(diǎn)B所表示的數(shù)為30.現(xiàn)有一動(dòng)點(diǎn)P從點(diǎn)B出發(fā)向左運(yùn)動(dòng),到達(dá)點(diǎn)A停止.P點(diǎn)運(yùn)動(dòng)到數(shù)軸上的什么位置時(shí),P、A和B中恰有一個(gè)點(diǎn)為其余兩點(diǎn)的奇點(diǎn)?
【答案】(1)3,-1 (2) -30, 10
【解析】
(1)根據(jù)定義發(fā)現(xiàn):奇點(diǎn)表示的數(shù)到{M,N}中,前面的點(diǎn)M是到后面的數(shù)N的距離的3倍,從而得出結(jié)論;
根據(jù)定義發(fā)現(xiàn):奇點(diǎn)表示的數(shù)到{N,M}中,前面的點(diǎn)N是到后面的數(shù)M的距離的3倍,從而得出結(jié)論;
(2)點(diǎn)A到點(diǎn)B的距離為6,由奇點(diǎn)的定義可知:分兩種情況列式:①PB=3PA;②PA=3PB;可以得出結(jié)論.
(1)5-(-3)=8,
8÷(3+1)=2,
5-2=3,
-3+2=-1.
故表示數(shù)3的點(diǎn)是{M,N}的奇點(diǎn);表示數(shù)-1的點(diǎn)是{N,M}的奇點(diǎn).
(2)30-(-50)=80,
80÷(3+1)=20,
30-20=10,
-50+20=-30.
故點(diǎn)P運(yùn)動(dòng)到數(shù)軸上表示-30和10的點(diǎn)的位置時(shí),P,A,B中恰有一個(gè)點(diǎn)為其余兩點(diǎn)的奇點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】兩個(gè)反比例函數(shù),在第一象限內(nèi)的圖象如圖所示,點(diǎn)P1,P2,P3,…,P2018在反比例函數(shù)圖象上,它們的橫坐標(biāo)分別是,,,…,,縱坐標(biāo)分別是1,3,5,…,共2018個(gè)連續(xù)奇數(shù),過(guò)點(diǎn)P1,P2,P3,…,P2018分別作軸的平行線,與的圖象交點(diǎn)依次是Q1(,),Q2(,),Q3(,),…,Q2018(,),則=_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】矩形ABCD的兩條對(duì)稱軸為坐標(biāo)軸,點(diǎn)A的坐標(biāo)為(2,1).一張透明紙上畫有一個(gè)點(diǎn)和一條拋物線,平移透明紙,這個(gè)點(diǎn)與點(diǎn)A重合,此時(shí)拋物線的函數(shù)表達(dá)式為y=x2 , 再次平移透明紙,使這個(gè)點(diǎn)與點(diǎn)C重合,則該拋物線的函數(shù)表達(dá)式變?yōu)椋?)
A.y=x2+8x+14
B.y=x2-8x+14
C.y=x2+4x+3
D.y=x2-4x+3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】交通工程學(xué)理論把在單向道路上行駛的汽車看成連續(xù)的液體,并用流量、速度、密度三個(gè)概念描述車流的基本特征。其中流量q(輛/小時(shí))指單位時(shí)間內(nèi)通過(guò)道路指定斷面的車輛數(shù);速度v(千米/小時(shí))指通過(guò)道路指定斷面的車輛速度;密度(輛/千米)指通過(guò)道路指定斷面單位長(zhǎng)度內(nèi)的車輛數(shù),為配合大數(shù)據(jù)治堵行動(dòng),測(cè)得某路段流量q與速度v之間的部分?jǐn)?shù)據(jù)如下表:
速度v(千米/小時(shí)) | … | 5 | 10 | 20 | 32 | 40 | 48 | … |
流量q(輛/小時(shí)) | … | 550 | 1000 | 1600 | 1792 | 1600 | 1152 | … |
(1)根據(jù)上表信息,下列三個(gè)函數(shù)關(guān)系式中,刻畫q,v關(guān)系最準(zhǔn)確的是(只需填上正確答案的序號(hào))① ② ③
(2)請(qǐng)利用(1)中選取的函數(shù)關(guān)系式分析,當(dāng)該路段的車流速為多少時(shí),流量達(dá)到最大?最大流量是多少?
(3)已知q,v,k滿足 ,請(qǐng)結(jié)合(1)中選取的函數(shù)關(guān)系式繼續(xù)解決下列問(wèn)題:
①市交通運(yùn)行監(jiān)控平臺(tái)顯示,當(dāng) 時(shí)道路出現(xiàn)輕度擁堵,試分析當(dāng)車流密度k在什么范圍時(shí),該路段出現(xiàn)輕度擁堵;
②在理想狀態(tài)下,假設(shè)前后兩車車頭之間的距離d(米)均相等,求流量q最大時(shí)d的值
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某糧庫(kù)已存有糧食100噸,本周內(nèi)糧庫(kù)進(jìn)出糧食的紀(jì)錄如下(運(yùn)進(jìn)記為正,運(yùn)出記為負(fù)):
(1)通過(guò)計(jì)算,說(shuō)明本周內(nèi)哪天糧庫(kù)剩下的糧食最多?
(2)若運(yùn)進(jìn)的糧食為購(gòu)進(jìn)的,購(gòu)買的價(jià)格為每噸2000元,運(yùn)出的糧食為賣出的,賣出的價(jià)格為每噸2300元,則這周的利潤(rùn)為多少?
(3)若每周平均進(jìn)出的糧食大致相同,則再過(guò)幾周糧庫(kù)存的糧食可達(dá)到200噸?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本題滿分10分)某校八年級(jí)學(xué)生全部參加“初二生物地理會(huì)考”,從中抽取了部分學(xué)生的生物考試成績(jī),將他們的成績(jī)進(jìn)行統(tǒng)計(jì)后分為A、B、C、D四個(gè)等級(jí),并將統(tǒng)計(jì)結(jié)果繪制成如下的統(tǒng)計(jì)圖,請(qǐng)結(jié)合圖中所給的信息解答下列問(wèn)題:
(1)抽取了__名學(xué)生成績(jī);
(2)請(qǐng)把頻數(shù)分布直方圖補(bǔ)充完整;
(3)扇形統(tǒng)計(jì)圖中A等級(jí)所在的扇形的圓心角度數(shù)是__;
(4)若A、B、C三個(gè)等級(jí)為合格,該校初二年級(jí)有900名學(xué)生,估計(jì)全年級(jí)生物合格的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,AB是⊙O的直徑,D為⊙O上一點(diǎn),OD⊥AC,垂足為E,連接BD
(1)求證:BD平分∠ABC;
(2)當(dāng)∠ODB=30°時(shí),求證:BC=OD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,點(diǎn)E是邊AD的中點(diǎn),EC交對(duì)角線于點(diǎn)F,若S△DEC=9,則S△BCF=( )
A.6
B.8
C.10
D.12
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com