【題目】如圖,在△ABC中,∠B=90°,AB=12mm,BC=24mm,動點P從點A開始沿邊AB向B以2mm/s的速度移動(不與點B重合),動點Q從點B開始沿邊BC向C以4mm/s的速度移動(不與點C重合).如果P、Q分別從A、B同時出發(fā),設(shè)運動的時間為ts,四邊形APQC的面積為ymm2.
(1)y與t之間的函數(shù)關(guān)系式;
(2)求自變量t的取值范圍;
(3)四邊形APQC的面積能否等于172mm2.若能,求出運動的時間;若不能,說明理由.
【答案】(1)y=4t2﹣24t+144;(2)0<t<6;(3)四邊形APQC的面積不能等于172mm2,見解析.
【解析】
(1)利用兩個直角三角形的面積差求得答案即可;
(2)利用線段的長度與運動速度建立不等式得出答案即可;
(3)利用(1)的函數(shù)建立方程求解判斷即可.
解:(1)∵出發(fā)時間為t,點P的速度為2mm/s,點Q的速度為4mm/s,
∴PB=12﹣2t,BQ=4t,
∴y=×12×24﹣×(12﹣2t)×4t
=4t2﹣24t+144.
(2)∵t>0,12﹣2t>0,
∴0<t<6.
(3)不能,
4t2﹣24t+144=172,
解得:t1=7,t2=﹣1(不合題意,舍去)
因為0<t<6.所以t=7不在范圍內(nèi),
所以四邊形APQC的面積不能等于172mm2.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠C=90°,AC=3cm,BC=4cm,動點P從點B出發(fā)以2cm/s的速度向點C移動,同時動點Q從C出發(fā)以1cm/s的速度向點A移動,設(shè)它們的運動時間為t.
(1)t為何值時,△CPQ的面積等于△ABC面積的?
(2)運動幾秒時,△CPQ與△CBA相似?
(3)在運動過程中,PQ的長度能否為1cm?試說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某初級中學(xué)數(shù)學(xué)興趣小組為了了解本校學(xué)生的年齡情況,隨機抽取了該校部分學(xué)生的年齡作為樣本,經(jīng)過數(shù)據(jù)整理,繪制出如下不完整的統(tǒng)計圖.依據(jù)相關(guān)信息解答以下問題:
(1)寫出樣本容量 ,并補全條形統(tǒng)計圖;
(2)寫出樣本的眾數(shù) 歲,中位數(shù) 歲;
(3)若該校一共有600名學(xué)生.估計該校學(xué)生年齡在15歲及以上的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD為菱形,M為BC上一點,連接AM交對角線BD于點G,并且∠ABM=2∠BAM.
(1)求證:AG=BG;
(2)若點M為BC的中點,同時S△BMG=1,求三角形ADG的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD和正方形CEFG邊長分別為a和b,正方形CEFG繞點C旋轉(zhuǎn),給出下列結(jié)論:①BE=DG;②BE⊥DG;③DE2+BG2=2a2+b2,其中正確結(jié)論是_____(填序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知點的坐標(biāo)為,且,拋物線圖象經(jīng)過三點.
(1)求兩點的坐標(biāo);
(2)求拋物線的解析式;
(3)若點是直線下方的拋物線上的一個動點,作于點,當(dāng)的值最大時,求此時點的坐標(biāo)及的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某校落實新課改精神的情況,現(xiàn)以該校九年級二班的同學(xué)參加課外活動的情況為樣本,對其參加“球類”、“繪畫類”、“舞蹈類”、“音樂類”、“棋類”活動的情況進行調(diào)查統(tǒng)計,并繪制了如圖所示的統(tǒng)計圖.
(1)參加音樂類活動的學(xué)生人數(shù)為 人,參加球類活動的人數(shù)的百分比為 ;
(2)請把圖2(條形統(tǒng)計圖)補充完整;
(3)該校學(xué)生共600人,則參加棋類活動的人數(shù)約為 ;
(4)該班參加舞蹈類活動的4位同學(xué)中,有1位男生(用E表示)和3位女生(分別用F,G,H表示),先準(zhǔn)備從中選取兩名同學(xué)組成舞伴,請用列表或畫樹狀圖的方法求恰好選中一男一女的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖所示的雙曲線是函數(shù)(m為常數(shù),x>0)圖象的一支.
(1)求常數(shù)m的取值范圍;
(2)若該函數(shù)的圖象與一次函數(shù)y=x+1的圖象在第一象限的交點為A(2,n),求點A的坐標(biāo)及反比例函數(shù)的表達式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com