【題目】如圖,正方形ABCD中,G為BC邊上一點,BE⊥AG于E,DF⊥AG于F,連接DE.
(1)求證:△ABE≌△DAF;
(2)若BE=8,EF=7,求CD的長.
科目:初中數(shù)學 來源: 題型:
【題目】豐富的圖形世界里有奇妙的數(shù)量關系,讓我們通過下面這些幾何體開始神奇的探索之旅.
觀察:下面這些幾何體都是簡單幾何體,請您仔細觀察.
統(tǒng)計:每個幾何體都會有棱(棱數(shù)為E)、面(面數(shù)為F)、頂點(頂點數(shù)為V),現(xiàn)將有關數(shù)據(jù)統(tǒng)計,完成下表.
幾何體 | a | b | c | d | e |
棱數(shù)(E) | 6 | 9 | 15 | ||
面數(shù)(F) | 4 | 5 | 5 | 6 | |
頂點數(shù)(V) | 4 | 5 | 8 |
發(fā)現(xiàn):(1)簡單幾何中, ;
(2)簡單幾何中,每條棱都是 個面的公共邊;
(3)在正方體中,每個頂點處有 條棱,每條棱都有 個頂點,所以有23.
應用:有一個叫“正十二面體”的簡單幾何體,它有十二個面,每個面都是正五邊形,它的每個頂點處都有相同數(shù)目的棱.請問它有 條棱, 個頂點,每個頂點處有 條棱.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】列一元一次方程解應用題.
(1)商店出售茶壺和茶杯,茶壺每只定價20元,茶杯每只定價5元,該商品制定了兩種優(yōu)惠方法:
①買一只茶壺贈一只茶杯;②按總價的90%付款.某顧客購買茶壺5只,茶杯若干只(不少于5只),問顧客買多少只茶杯時,兩種方法付款相同.假如該顧客買了茶杯20只,哪種買法實惠?
(2)某人原計劃騎車以每小時12千米的速度由A地到B地,這樣便可在規(guī)定的時間到達,但他因事將原計劃出發(fā)的時間推遲了20分鐘,只好以每小時15千米的速度前進,結(jié)果比規(guī)定時間早4分鐘到達B地,求A,B兩地間的距離.
(3)某工廠完成一批產(chǎn)品,一車間單獨完成需30天,二車間單獨完成需20天.
①如一車間先做若干天,然后由二車間繼續(xù)做,直至完成,前后共做了25天,問一車間先做了幾天?
②如一車間先做了3天后,二車間加入一起做,還需多少天才能完成?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】由若干個(大于個)大小相同的正方體組成一個幾何體的從正面看和從上面看如圖所示,則這個幾何體的從左面看不可能是下列圖中的( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是放在地面上的一個長方體盒子,其中AB=18cm,BC=12cm,BF=10cm,點M在棱AB上,且AM=6cm,點N是FG的中點,一只螞蟻要沿著長方體盒子的表面從點M爬行到點N,它需要爬行的最短路程為____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】對某班學生的一次數(shù)學成績進行統(tǒng)計,各分數(shù)段的人數(shù)如圖所示,根據(jù)圖示信息填空:
(1)該班有學生________人;
(2)成績在69.5~79.5之間的人數(shù)為________人;
(3)79.5分以上的為優(yōu)秀,該班的優(yōu)秀率是________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在東西方向的海岸線l上有一長為1千米的碼頭MN,在碼頭西端M的正西方向30 千米處有一觀察站O.某時刻測得一艘勻速直線航行的輪船位于O的北偏西30°方向,且與O相距 千米的A處;經(jīng)過40分鐘,又測得該輪船位于O的正北方向,且與O相距20千米的B處.
(1)求該輪船航行的速度;
(2)如果該輪船不改變航向繼續(xù)航行,那么輪船能否正好行至碼頭MN靠岸?請說明理由.(參考數(shù)據(jù): )
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明家今年種植的“紅燈”櫻桃喜獲豐收,采摘上市20天全部銷售完,小明對銷售情況進行跟蹤記錄,并將記錄情況繪成圖象,日銷售量y(單位:千克)與上市時間x(單位:天)的函數(shù)關系如圖1所示,櫻桃價格z(單位:元/千克)與上市時間x(單位:天)的函數(shù)關系式如圖2所示.
(1)觀察圖象,直接寫出日銷售量的最大值;
(2)求小明家櫻桃的日銷售量y與上市時間x的函數(shù)解析式;
(3)試比較第10天與第12天的銷售金額哪天多?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD中,點E、F分別在BC、CD上,△AEF是等邊三角形,連接AC交EF于G,下列結(jié)論:①BE=DF,②∠DAF=15°,③AC垂直平分EF,④BE+DF=EF,⑤S△CEF=2S△ABE.其中正確結(jié)論有【 】個.
A.2 B.3 C.4 D.5
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com