【題目】教材呈現(xiàn):如圖是華師版八年級(jí)上冊(cè)數(shù)學(xué)教材第94頁的部分內(nèi)容.2.線段垂直平分線.我們已經(jīng)知道線段是軸對(duì)稱圖形,線段的垂直平分線是線段的對(duì)稱軸,如圖,直線MN是線段AB的垂直平分線,P是MN上任一點(diǎn),連結(jié)PA、PB,將線段AB沿直線MN對(duì)稱,我們發(fā)現(xiàn)PA與PB完全重合,由此即有:線段垂直平分線的性質(zhì)定理 線段垂直平分線上的點(diǎn)到線段的距離相等.已知:如圖,MN⊥AB,垂足為點(diǎn)C,AC=BC,點(diǎn)P是直線MN上的任意一點(diǎn).求證:PA=PB.圖中有兩個(gè)直角三角形APC和BPC,只要證明這兩個(gè)三角形全等,便可證明PA=PB.
定理證明:請(qǐng)根據(jù)教材中的分析,結(jié)合圖①,寫出“線段垂直平分線的性質(zhì)定理”完整的證明過程.
定理應(yīng)用:
(1)如圖②,在△ABC中,直線m、n分別是邊BC、AC的垂直平分線,直線m、n的交點(diǎn)為O.過點(diǎn)O作OH⊥AB于點(diǎn)H.求證:AH=BH.
(2)如圖③,在△ABC中,AB=BC,邊AB的垂直平分線l交AC于點(diǎn)D,邊BC的垂直平分線k交AC于點(diǎn)E.若∠ABC=120°,AC=15,則DE的長為 .
【答案】(1)見解析;(2)5
【解析】
定理證明:先證明△PAC≌△PBC,然后再運(yùn)用三角形全等的性質(zhì)進(jìn)行解答即可;
(1)連結(jié)AO、BO、CO利用線段的垂直平分線的判定和性質(zhì)即可解答;
(2)連接BD,BE,證明△BDE是等邊三角形即可解答.
解:定理證明:
∵MN⊥AB,
∴∠PCA=∠PCB=90°.
又∵AC=BC,PC=PC,
∴△PAC≌△PBC(SAS),
∴PA=PB.
定理應(yīng)用:(1)如圖2,連結(jié)OA、OB、OC.
∵直線m是邊BC的垂直平分線,
∴OB=OC,
∵直線n是邊AC的垂直平分線,
∴OA=OC,
∴OA=OB
∵OH⊥AB,
∴AH=BH;
(2)如圖③中,連接BD,BE.
∵BA=BC,∠ABC=120°,
∴∠A=∠C=30°,
∵邊AB的垂直平分線交AC于點(diǎn)D,邊BC的垂直平分線交AC于點(diǎn)E,
∴DA=DB,EB=EC,
∴∠A=∠DBA=30°,∠C=∠EBC=30°,
∴∠BDE=∠A+∠DBA=60°,∠BED=∠C+∠EBC=60°,
∴△BDE是等邊三角形,
∴AD=BD=DE=BE=EC,
∵AC=15=AD+DE+EC=3DE,
∴DE=5,
故答案為:5.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在以AB為直徑的半圓中,將弧BC沿弦BC折疊交AB于點(diǎn)D,若AD=5,DB=7.
(1)求BC的長;
(2)求圓心到BC的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在我市某一城市美化工程招標(biāo)時(shí),有甲、乙兩個(gè)工程隊(duì)投標(biāo),經(jīng)測算:甲隊(duì)單獨(dú)完成這項(xiàng)工程需要60天,若由甲隊(duì)先做20天,剩下的工程由甲、乙合作24天可完成.
(1)乙隊(duì)單獨(dú)完成這項(xiàng)工程需要多少天?
(2)甲隊(duì)施工一天,需付工程款3.5萬元,乙隊(duì)施工一天需付工程款2萬元.若該工程計(jì)劃在70天內(nèi)完成,在不超過計(jì)劃天數(shù)的前提下,是由甲隊(duì)或乙隊(duì)單獨(dú)完成工程省錢?還是由甲乙兩隊(duì)全程合作完成該工程省錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)的圖象經(jīng)過點(diǎn)A(0,3)且與兩坐標(biāo)軸所圍成的三角形的面積為3,則這個(gè)一次函數(shù)的表達(dá)式為( )
A. y=1.5x+3 B. y=-1.5x+3 C. y=1.5x+3或y=-1.5x+3 D. 無法確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,點(diǎn)D、E在BC的延長線上,G是AC上一點(diǎn),且CG=CD,F是GD上一點(diǎn),且DF=DE.若∠A=100°,則∠E的大小為_____度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】工人小王生產(chǎn)甲、乙兩種產(chǎn)品,生產(chǎn)產(chǎn)品件數(shù)與所用時(shí)間之間的關(guān)系如表:
生產(chǎn)甲產(chǎn)品件數(shù)(件) | 生產(chǎn)乙產(chǎn)品件數(shù)(件) | 所用總時(shí)間(分鐘) |
10 | 10 | 350 |
30 | 20 | 850 |
(1)小王每生產(chǎn)一件甲種產(chǎn)品和每生產(chǎn)一件乙種產(chǎn)品分別需要多少分鐘?
(2)小王每天工作8個(gè)小時(shí),每月工作25天.如果小王四月份生產(chǎn)甲種產(chǎn)品a件(a為正整數(shù)).
①用含a的代數(shù)式表示小王四月份生產(chǎn)乙種產(chǎn)品的件數(shù);
②已知每生產(chǎn)一件甲產(chǎn)品可得1.50元,每生產(chǎn)一件乙種產(chǎn)品可得2.80元,若小王四月份的工資不少于1500元,求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在每個(gè)小正方形的邊長均為1的方格紙中有線段AB,其中點(diǎn)A、B均在小正方形的頂點(diǎn)上.
(1)在方格紙中畫出以BC為底的鈍角等腰三角形ABC,且點(diǎn)C在小正方形的頂點(diǎn)上;
(2)將(1)中的△ABC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)90°得到△DEC(點(diǎn)A的對(duì)應(yīng)點(diǎn)是點(diǎn)D,點(diǎn)B的對(duì)應(yīng)點(diǎn)是點(diǎn)E),畫出△CDE;
(3)在(2)的條件下,連接BE,請(qǐng)直接寫出△BCE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甘蔗富含大量鐵、鈣、鋅等人體必需的微量元素,素有“補(bǔ)血果”的美稱,是冬季熱銷的水果之一,為此,某水果商家12月份第一次用600元購進(jìn)云南甘蔗若干千克,銷售完后,他第二次又用600元購進(jìn)該甘蔗,但這次每千克的進(jìn)價(jià)比第一次的進(jìn)價(jià)提高了20%,所購進(jìn)甘蔗的數(shù)量比第一次少了25千克.
(1)求該商家第一次購買云南甘蔗的進(jìn)價(jià)是每千克多少元?
(2)假設(shè)商家兩次購進(jìn)的云南甘蔗按同一價(jià)格銷售,要使銷售后獲利不低于1000元,則每千克的售價(jià)至少為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在7×7網(wǎng)格中,每個(gè)小正方形的邊長都為1.
(1)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系后,若點(diǎn)A(3,4)、C(4,2),則點(diǎn)B的坐標(biāo)為 ;
(2)圖中格點(diǎn)△ABC的面積為 ;
(3)判斷格點(diǎn)△ABC的形狀,并說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com