【題目】在△ABC中,∠ACB=2∠B,如圖①,當(dāng)∠C=90°,AD為∠BAC的角平分線時(shí),在AB上截取AE=AC,連接DE,易證AB=AC+CD。
(1)如圖②,當(dāng)∠C≠90°,AD為∠BAC的角平分線時(shí),線段AB、AC、CD又有怎樣的數(shù)量關(guān)系?請(qǐng)寫出你的猜想并證明;
(2)如圖③,當(dāng)AD為△ABC的外角平分線時(shí),線段AB、AC、CD又有怎樣的數(shù)量關(guān)系?請(qǐng)寫出你的猜想,并對(duì)你的猜想給予證明。
【答案】證明見解析.
【解析】
試題分析:(1)首先在AB上截取AE=AC,連接DE,易證△ADE≌△ADC(SAS),則可得∠AED=∠C,ED=CD,又由∠AED=∠ACB,∠ACB=2∠B,所以∠AED=2∠B,即∠B=∠BDE,易證DE=CD,則可求得AB=AC+CD;
(2)首先在BA的延長線上截取AE=AC,連接ED,易證△EAD≌△CAD,可得ED=CD,∠AED=∠ACD,又由∠ACB=2∠B,易證DE=EB,則可求得AC+AB=CD.
試題解析:(1)猜想:AB=AC+CD.
證明:如圖②,在AB上截取AE=AC,連接DE,∵AD為∠BAC的角平分線時(shí),∴∠BAD=∠CAD,
∵AD=AD,∴△ADE≌△ADC(SAS),∴∠AED=∠C,ED=CD,∵∠ACB=2∠B,∴∠AED=2∠B,
∵∠AED=∠B+∠EDB,∴∠B=∠EDB,∴EB=ED,∴EB=CD,∴AB=AE+DE=AC+CD.
(2)猜想:AB+AC=CD.
證明:在BA的延長線上截取AE=AC,連接ED.∵AD平分∠FAC,∴∠EAD=∠CAD.
在△EAD與△CAD中,AE=AC,∠EAD=∠CAD,AD=AD,∴△EAD≌△CAD(SAS).
∴ED=CD,∠AED=∠ACD.∴∠FED=∠ACB,又∵∠ACB=2∠B,∴∠FED=2∠B,∠FED=∠B+∠EDB,
∴∠EDB=∠B,∴EB=ED.∴EA+AB=EB=ED=CD.∴AC+AB=CD.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】市運(yùn)會(huì)舉行射擊比賽,校射擊隊(duì)從甲、乙、丙、丁四人中選拔一人參賽.在選拔賽中,每人射擊10次,計(jì)算他們10發(fā)成績的平均數(shù)(環(huán))及方差如下表.請(qǐng)你根據(jù)表中數(shù)據(jù)選一人參加比賽,最合適的人選是 .
甲 | 乙 | 丙 | 丁 | |
平均數(shù) | 8.2 | 8.0 | 8.0 | 8.2 |
方差 | 2.1 | 1.8 | 1.6 | 1.4 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的對(duì)角線AC,BD相交于點(diǎn)O,延長CB至點(diǎn)F,使CF=CA,連接AF,∠ACF的平分線分別交AF,AB,BD于點(diǎn)E,N,M,連接EO,已知BD=.
(1)求正方形ABCD的邊長;
(2)求OE的長;
(3)①求證:CN=AF;
②直接寫出四邊形AFBO的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用反證法證明“a>b”時(shí),應(yīng)先假設(shè)( )
A. a≥bB. a≤bC. a=bD. a<b
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程x2﹣4x+c+1=0有兩個(gè)相等的實(shí)數(shù)根,則常數(shù)c的值為( 。
A. ﹣1 B. 0 C. 1 D. 3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2015年響水縣某天最高氣溫為8℃,最低氣溫為-3℃,那么這天的最高氣溫比最低氣溫高 ( )
A. -11℃ B. -7℃ C. 7℃ D. 11℃
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)經(jīng)過點(diǎn) 經(jīng)過點(diǎn)A(﹣1,0),B(5,﹣6),C(6,0)
(1)求拋物線的解析式;
(2)如圖,在直線AB下方的拋物線上是否存在點(diǎn)P使四邊形PACB的面積最大?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由;
(3)若點(diǎn)Q為拋物線的對(duì)稱軸上的一個(gè)動(dòng)點(diǎn),試指出△QAB為等腰三角形的點(diǎn)Q一共有幾個(gè)?并請(qǐng)求出其中某一個(gè)點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,M是BC邊的中點(diǎn),AP平分∠A,BP⊥AP于點(diǎn)P、若AB=12,AC=22,則MP的長為_________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com