(2009•徐匯區(qū)二模)函數(shù)y=f(x)的圖象如圖所示,根據(jù)圖象提供的信息,下列結(jié)論中錯誤的是( )

A.f(5)=0;
B.f(6)=-2
C.當(dāng)3≤x≤7時,-2≤y≤4
D.當(dāng)3≤x≤6時,y隨x的增大而增大
【答案】分析:根據(jù)函數(shù)圖象的性質(zhì)和圖象上的數(shù)據(jù)分析得出函數(shù)的類型和所需要的條件,結(jié)合實際意義得到正確的結(jié)論.
解答:解:分析函數(shù)圖象可知,當(dāng)x=5時,y=0,即f(5)=0;
當(dāng)x=6時,y=-2,所以f(6)=-2;
當(dāng)3≤x≤7時,-2≤y≤4;
當(dāng)3≤x≤6時,y隨x的增大而減小.
故選D.
點評:主要考查了函數(shù)圖象的讀圖能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2010年上海市寶山區(qū)羅店中學(xué)中考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

(2009•徐匯區(qū)二模)如圖,拋物線y=ax2+bx+c(a≠0)與y軸正半軸交于點C,與x軸交于點A(2,0)、B(8,0),∠OCA=∠OBC.
(1)求拋物線的解析式;
(2)在直角坐標(biāo)平面內(nèi)確定點M,使得以點M、A、B、C為頂點的四邊形是平行四邊形,請直接寫出點M的坐標(biāo);
(3)若存在一點P到點A、B、C三點的距離相等,求點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年上海市徐匯區(qū)中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

(2009•徐匯區(qū)二模)如圖,拋物線y=ax2+bx+c(a≠0)與y軸正半軸交于點C,與x軸交于點A(2,0)、B(8,0),∠OCA=∠OBC.
(1)求拋物線的解析式;
(2)在直角坐標(biāo)平面內(nèi)確定點M,使得以點M、A、B、C為頂點的四邊形是平行四邊形,請直接寫出點M的坐標(biāo);
(3)若存在一點P到點A、B、C三點的距離相等,求點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年上海市徐匯區(qū)中考數(shù)學(xué)二模試卷(解析版) 題型:填空題

(2009•徐匯區(qū)二模)拋物線y=(x+2)2-2向右平移2個單位后所得拋物線的解析式為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年福建省漳州市雙語實驗學(xué)校自主招生考試數(shù)學(xué)試卷(解析版) 題型:解答題

(2009•徐匯區(qū)二模)如圖,拋物線y=ax2+bx+c(a≠0)與y軸正半軸交于點C,與x軸交于點A(2,0)、B(8,0),∠OCA=∠OBC.
(1)求拋物線的解析式;
(2)在直角坐標(biāo)平面內(nèi)確定點M,使得以點M、A、B、C為頂點的四邊形是平行四邊形,請直接寫出點M的坐標(biāo);
(3)若存在一點P到點A、B、C三點的距離相等,求點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年上海市徐匯區(qū)中考數(shù)學(xué)二模試卷(解析版) 題型:填空題

(2009•徐匯區(qū)二模)擲一枚質(zhì)地均勻的正方體骰子,骰子的六個面分別刻有1到6的點數(shù),擲出的點數(shù)大于4的概率為   

查看答案和解析>>

同步練習(xí)冊答案