【題目】如圖,已知BE平分∠ABC,∠CBE=25°,∠BED=25°,∠C=30°,求∠ADE與∠BEC的度數(shù).
【答案】∠ADE=50°;∠BEC=125°.
【解析】
根據(jù)平分線的定義得到∠ABC=2∠CBE=50°,再根據(jù)三角形內(nèi)角和定理得到∠BEC=180°-∠C-∠CBE=125°,由于∠CBE=∠BED=25°,根據(jù)平行線的判定得到DE∥BC,然后根據(jù)平行線的性質(zhì)得∠ADE=∠ABC=50°.
∵BE平分∠ABC,∠CBE=25°,
∴∠ABC=2∠CBE=50°,
∵∠C=30°,
∴∠BEC=180°-∠C-∠CBE=125°,
∵∠CBE=25°,∠BED=25°,
∴∠CBE=∠BED,
∴DE∥BC,
∴∠ADE=∠ABC=50°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b(k≠0)的圖象與反比例函數(shù)y= (m≠0)的圖象交于A、B兩點(diǎn),與x軸交于C點(diǎn),點(diǎn)A的坐標(biāo)為(n,6),點(diǎn)C的坐標(biāo)為(﹣2,0),且tan∠ACO=2.
(1)求該反比例函數(shù)和一次函數(shù)的解析式;
(2)求點(diǎn)B的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工廠承接了一批紙箱加工任務(wù),用如圖1所示的長方形和正方形紙板(長方形的寬與正方形的邊長相等)加工成如圖所示的豎式與橫式兩種無蓋的長方形紙箱.(加工時(shí)接縫材料不計(jì))
若該廠購進(jìn)正方形紙板1000張,長方形紙板2000張.問豎式紙盒,橫式紙盒各加工多少個(gè),恰好能將購進(jìn)的紙板全部用完;
該工廠某一天使用的材料清單上顯示,這天一共使用正方形紙板50張,長方形紙板a張,全部加工成上述兩種紙盒,且120<a<136,試求在這一天加工兩種紙盒時(shí),a的所有可能值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AC=BC=2,∠C=90°,將一塊等腰三角板的直角頂點(diǎn)放在斜邊AB的中點(diǎn)P處,將三角板繞點(diǎn)P旋轉(zhuǎn),三角板的兩直角邊分別交射線AC、CB于D、E兩點(diǎn).如圖①、②、③是旋轉(zhuǎn)三角板得到的圖形中的3種情況,研究:
(1)三角板繞點(diǎn)P旋轉(zhuǎn),觀察線段PD與PE之間有什么數(shù)量關(guān)系?并結(jié)合圖②說明理由.
(2)三角板繞點(diǎn)P旋轉(zhuǎn),△PCE是否能成為等腰三角形?若能,指出所有情況(即寫出△PCE為等腰三角形時(shí)BE的長);若不能,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)有進(jìn)水管與出水管的容器,從某時(shí)刻開始的3分內(nèi)只進(jìn)水不出水,在隨后的9分內(nèi)既進(jìn)水又出水,每分的進(jìn)水量和出水量都是常數(shù).容器內(nèi)的水量y(單位:升)與時(shí)間x(單位:分)之間的關(guān)系如圖所示.當(dāng)容器內(nèi)的水量大于5升時(shí),求時(shí)間x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】分解因式x2-4y2-2x+4y,細(xì)心觀察這個(gè)式子就會(huì)發(fā)現(xiàn),前兩項(xiàng)符合平方差公式,后兩項(xiàng)可提取公因式,前后兩部分分別分解因式后會(huì)產(chǎn)生公因式,然后提取公因式就可以完成整個(gè)式子的分解因式,過程為:x2-4y2-2x+4y=(x+2y)(x-2y)-2(x-2y)=(x-2y)(x+2y-2).這種分解因式的方法叫分組分解法,利用這種方法解決下列問題:
(1)分解因式:a2-4a-b2+4;
(2)若△ABC三邊a、b、c滿足a2-ab-ac+bc=0,試判斷△ABC的形狀.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了鼓勵(lì)市民節(jié)約用水,某市水費(fèi)實(shí)行階梯式計(jì)量水價(jià).每戶每月用水量不超過25噸,收
費(fèi)標(biāo)準(zhǔn)為每噸a元;若每戶每月用水量超過25噸時(shí),其中前25噸還是每噸a元,超出的部
分收費(fèi)標(biāo)準(zhǔn)為每噸b元.下表是小明家一至四月份用水量和繳納水費(fèi)情況.根據(jù)表格提供的數(shù)
據(jù),回答:
月份 | 一 | 二 | 三 | 四 |
用水量(噸) | 16 | 18 | 30 | 35 |
水費(fèi)(元) | 32 | 36 | 65 | 80 |
(1)a=________;b=________;
(2)若小明家五月份用水32噸,則應(yīng)繳水費(fèi) 元;
(3)若小明家六月份應(yīng)繳水費(fèi)102.5元,則六月份他們家的用水量是多少噸?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,直線l1:y=﹣x+n過點(diǎn)A(﹣1,3),雙曲線C:y= (x>0),過點(diǎn)B(1,2),動(dòng)直線l2:y=kx﹣2k+2(常數(shù)k<0)恒過定點(diǎn)F.
(1)求直線l1 , 雙曲線C的解析式,定點(diǎn)F的坐標(biāo);
(2)在雙曲線C上取一點(diǎn)P(x,y),過P作x軸的平行線交直線l1于M,連接PF.求證:PF=PM.
(3)若動(dòng)直線l2與雙曲線C交于P1 , P2兩點(diǎn),連接OF交直線l1于點(diǎn)E,連接P1E,P2E,求證:EF平分∠P1EP2 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,銳角三角形ABC的邊AB和AC上的高線CE和BF相交于點(diǎn)D.請(qǐng)寫出圖中的一對(duì)相似三角形,如 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com