【題目】表中所列、的7對值是二次函數(shù)圖象上的點所對應(yīng)的坐標,其中
… | … | ||||||||
… | 6 | 11 | 11 | 6 | … |
根據(jù)表中提供約信息,有以下4個判斷:①;②;③當時,的值是;④;其中判斷正確的是( )
A.①②③B.①②④C.①③④D.②③④
【答案】B
【解析】
首先根據(jù),其對應(yīng)的函數(shù)值是先增大后減小,可得拋物線開口向下,所以a<0;然后根據(jù)函數(shù)值是先增大后減小,可得6<m<14<k;最后根據(jù)a<0,可得二次函數(shù)有最大值,而且二次函數(shù)的最大值,所以b2≥4a(ck),據(jù)此判斷即可.
解:∵,其對應(yīng)的函數(shù)值是先增大后減小,
∴拋物線開口向下,
∴,①符合題意;
∴,
∴,②符合題意;
根據(jù)圖表中的數(shù)據(jù)知,只有當時,拋物線的頂點坐標縱坐標是,即的值是,③不符合題意;
∵,,
∴,
∴,④符合題意.
綜上,可得判斷正確的是:①②④.
故選:B.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一輛快遞車從長春出發(fā),走高速公路,途經(jīng)伊通,前往靖宇鎮(zhèn)送快遞,到達后卸貨和休息共用1h,然后開車按原速原路返回長春.這輛快遞車在長春到伊通、伊通到靖宇的路段上分別保持勻速前進,這輛快遞車距離長春的路程y(km)與它行駛的時間x(h)之間的函數(shù)圖象如圖所示.
(1)快遞車從伊通到長春的速度是______km/h,往返長春和靖宇兩地一共用時______h.
(2)當這輛快遞車在靖宇到伊通的路段上行駛時,求y與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍.
(3)如果這輛快遞車兩次經(jīng)過同一個服務(wù)區(qū)的時間間隔為4h,直接寫出這個服務(wù)區(qū)距離伊通的路程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于點D,O為AB上一點,經(jīng)過點A,D的⊙O分別交AB,AC于點E,F,連接OF交AD于點G.
(1)求證:BC是⊙O的切線;
(2)求證:;
(3)若BE=8,sinB=,求AD的長,
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市體育中考現(xiàn)場考試內(nèi)容有三項:50米跑為必測項目.另在立定跳遠、實心球(二選一)和坐位體前屈、1分鐘跳繩(二選一)中選擇兩項.
(1)每位考生有_________種選擇方案;
(2)求小明與小剛選擇同種方案的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某辦公樓的后面有一建筑物,當光線與地面的夾角是22°時,辦公樓在建筑物的墻上留下高2米的影子,而當光線與地面夾角是45°時,辦公樓頂在地面上的影子與墻角有25米的距離(在一條直線上).
(1)求辦公樓的高度;
(2)若要在,之間掛一些彩旗,請你求出,之間的距離.(參考數(shù)據(jù):,,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了解學(xué)生課外閱讀情況,就學(xué)生每周閱讀時間隨機調(diào)查了部分學(xué)生,調(diào)查結(jié)果按性別整理如下:
女生閱讀時間人數(shù)統(tǒng)計表
閱讀時間(小時) | 人數(shù) | 占女生人數(shù)百分比 |
4 | ||
5 | ||
6 | ||
2 |
根據(jù)圖表解答下列問題:
(1)在女生閱讀時間人數(shù)統(tǒng)計表中, , ;
(2)此次抽樣調(diào)查中,共抽取了 名學(xué)生,學(xué)生閱讀時間的中位數(shù)在 時間段;
(3)從閱讀時間在2~2.5小時的5名學(xué)生中隨機抽取2名學(xué)生參加市級閱讀活動,恰好抽到男女生各一名的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某國飛機失事墜入大海,該國立即派出一艘海上搜救船前往飛機失事海域進行打撈.在失事海域的點處儀器測得俯角為正前方的海底點處有黑匣子,沿同一方向繼續(xù)航行米到點處,測得正前方點處的俯角為.求失事飛機的黑匣子離海面距離,(結(jié)果保留根號)(參考數(shù)據(jù):,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:⊙O的兩條弦AB,CD相交于點M,且AB=CD.
(1)如圖1,連接AD.求證:AM=DM.
(2)如圖2,若AB⊥CD,在弧BD上取一點E,使弧BE=弧BC,AE交CD于點F,連AD、DE.
①利斷∠E與∠DFE是否相等,并說明理由.
②若DE=7,AM+MF=17,求△ADF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為加快城鄉(xiāng)對接,建設(shè)全域美麗鄉(xiāng)村,某地區(qū)對A、B兩地間的公路進行改建.如圖,A、B兩地之間有一座山,汽車原來從A地到B地需途徑C地沿折線ACB行駛,現(xiàn)開通隧道后,汽車可直接沿直線AB行駛.已知BC=80千米,∠A=45°,∠B=30°.
(1)開通隧道前,汽車從A地到B地大約要走多少千米?
(2)開通隧道后,汽車從A地到B地大約可以少走多少千米?(結(jié)果精確到0.1千米)(參考數(shù)據(jù):≈1.41,≈1.73)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com