【題目】在△ABC中,AB=AC,D是BC的中點,以AC為腰向外作等腰直角△ACE,∠EAC=90°,連接BE,交AD于點F,交AC于點G.
(1)若∠BAC=50°,求∠AEB的度數(shù);
(2)求證:∠AEB=∠ACF;
(3)試判斷線段EF、BF與AC三者之間的等量關(guān)系,并證明你的結(jié)論.
【答案】(1)20°;(2)證明見解析;(3)EF2+BF2=2AC2.理由見解析.
【解析】
(1)根據(jù)等腰直角三角形的旋轉(zhuǎn)得出∠ABE=∠AEB,求出∠BAE,根據(jù)三角形內(nèi)角和定理求出即可;
(2)根據(jù)等腰三角形的性質(zhì)得出∠BAF=∠CAF,根據(jù)SAS推出△BAF≌△CAF,根據(jù)全等得出∠ABF=∠ACF,即可得出答案;
(3)根據(jù)全等得出BF=CF,求出∠CFG=∠EAG=90°,根據(jù)勾股定理求出EF2+BF2=EF2+CF2=EC2,EC2=AC2+AE2=2AC2,即可得出答案.
(1)∵AB=AC,△ACE是等腰直角三角形,
∴AB=AE,
∴∠ABE=∠AEB,
又∵∠BAC=50°,∠EAC=90°,
∴∠BAE=50°+90°=140°,
∴∠AEB=(180°-140°)÷2=20°;
(2)∵AB=AC,D是BC的中點,
∴∠BAF=∠CAF.
在△BAF和△CAF中
,
∴△BAF≌△CAF(SAS),
∴∠ABF=∠ACF,
∵∠ABE=∠AEB,
∴∠AEB=∠ACF;
(3)∵△BAF≌△CAF,
∴BF=CF,
∵∠AEB=∠ACF,∠AGE=∠FGC,
∴∠CFG=∠EAG=90°,
∴EF2+BF2=EF2+CF2=EC2,
∵△ACE是等腰直角三角形,
∴∠CAE=90°,AC=AE,
∴EC2=AC2+AE2=2AC2,
即EF2+BF2=2AC2.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AC=9,AB=12,BC=15,P為BC邊上一動點,PG⊥AC于點G,PH⊥AB于點H.
(1)求證:四邊形AGPH是矩形;
(2)在點P的運動過程中,GH的長度是否存在最小值?若存在,請求出最小值,若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市某中學(xué)舉辦“網(wǎng)絡(luò)安全知識答題競賽”,初、高中部根據(jù)初賽成績各選出5名選手組成初中代表隊和高中代表隊參加學(xué)校決賽,兩個隊各選出的5名選手的決賽成績?nèi)鐖D所示.
平均分(分) | 中位數(shù)(分) | 眾數(shù)(分) | 方差(分2) | |
初中部 | a | 85 | b | s初中2 |
高中部 | 85 | c | 100 | 160 |
(1)根據(jù)圖示計算出a、b、c的值;
(2)結(jié)合兩隊成績的平均數(shù)和中位數(shù)進(jìn)行分析,哪個隊的決賽成績較好?
(3)計算初中代表隊決賽成績的方差s初中2,并判斷哪一個代表隊選手成績較為穩(wěn)定.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平面內(nèi)的兩條直線有相交和平行兩種位置關(guān)系.
(1)如圖1,若,點在、內(nèi)部, , ,求的度數(shù).
(2)如圖2,在AB∥CD的前提下,將點移到、外部,則、、之間有何數(shù)量關(guān)系?請證明你的結(jié)論.
(3)如圖3,寫出、、、之間的數(shù)量關(guān)系?(不需證明)
(4)如圖4,求出的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】班級組織同學(xué)乘大巴車前往“研學(xué)旅行”基地開展愛國教育活動,基地離學(xué)校有90公里,隊伍8:00從學(xué)校出發(fā).蘇老師因有事情,8:30從學(xué)校自駕小車以大巴1.5倍的速度追趕,追上大巴后繼續(xù)前行,結(jié)果比隊伍提前15分鐘到達(dá)基地.問:
(1)大巴與小車的平均速度各是多少?
(2)蘇老師追上大巴的地點到基地的路程有多遠(yuǎn)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,拋物線y=﹣x2+bx+c經(jīng)過點A(﹣1,0)和C(0,3).(1)求拋物線的解析式;(2)在拋物線的對稱軸上,是否存在點P,使PA+PC的值最小?如果存在,請求出點P的坐標(biāo),如果不存在,請說明理由;(3)設(shè)點M在拋物線的對稱軸上,當(dāng)△MAC是直角三角形時,求點M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2011山東濟(jì)南,27,9分)如圖,矩形OABC中,點O為原點,點A的坐標(biāo)為(0,8),點C的坐標(biāo)為(6,0).拋物線經(jīng)過A、C兩點,與AB邊交于點D.
(1)求拋物線的函數(shù)表達(dá)式;
(2)點P為線段BC上一個動點(不與點C重合),點Q為線段AC上一個動點,AQ=CP,連接PQ,設(shè)CP=m,△CPQ的面積為S.
①求S關(guān)于m的函數(shù)表達(dá)式,并求出m為何值時,S取得最大值;
②當(dāng)S最大時,在拋物線的對稱軸l上若存在點F,使△FDQ為直角三角形,請直接寫出所有符合條件的F的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】矩形OABC在平面直角坐標(biāo)系中的位置如圖所示,已知,點A在x軸上,點C在y軸上,P是對角線OB上一動點(不與原點重合),連接PC,過點P作,交x軸于點D.下列結(jié)論:①;②當(dāng)點D運動到OA的中點處時,;③在運動過程中,是一個定值;④當(dāng)△ODP為等腰三角形時,點D的坐標(biāo)為.其中正確結(jié)論的個數(shù)是( )
A. 1個B. 2個C. 3個D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線(>0)與軸交于A,B兩點(A點在B點的左邊),與軸交于點C。
(1)如圖1,若△ABC為直角三角形,求的值;
(2)如圖1,在(1)的條件下,點P在拋物線上,點Q在拋物線的對稱軸上,若以BC為邊,以點B,C,P,Q為頂點的四邊形是平行四邊形,求P點的坐標(biāo);
(3)如圖2,過點A作直線BC的平行線交拋物線于另一點D,交軸交于點E,若AE:ED=1:4,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com