【題目】已知A=3a2b-2ab2+abc,小明同學(xué)錯將“2A-B”看成“2A+B”,算得結(jié)果為4a2b-3ab2+4abc.
(1)求出2A-B的結(jié)果;
(2)小強(qiáng)同學(xué)說(1)中的結(jié)果的大小與c的取值無關(guān),正確嗎?若a=,b=,求(1)中式子的值.
【答案】(1);(2)小強(qiáng)說的正確,因?yàn)榛喓笈cc無關(guān);0
【解析】
根據(jù)2A+B=4a2b-3ab2+4abc,求出B,然后求解;
將原式進(jìn)行化簡,結(jié)果與c無關(guān).
解:(1)∵2A+B=4a2b-3ab2+4abc
∴B=4a2b-3ab2+4abc-2A=4a2b-3ab2+4abc-2(3a2b-2ab2+abc)
=4a2b-3ab2+4abc-6a2b+4ab2-2abc
=
2A-B=2(3a2b-2ab2+abc)-( )
=6a2b-4ab2+2abc
=
(2)小強(qiáng)說的正確,因?yàn)榛喓笈cc無關(guān);
a=,b=時,原式=
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在Rt△ABC中,∠C=90°,AC=BC=2,點(diǎn)D、E分別在邊AC、AB上,AD=DE=AB,連接DE.將△ADE繞點(diǎn)A逆時針方向旋轉(zhuǎn),記旋轉(zhuǎn)角為θ.
(1)問題發(fā)現(xiàn)
①當(dāng)θ=0°時,= ;
②當(dāng)θ=180°時,= .
(2)拓展探究
試判斷:當(dāng)0°≤θ<360°時,的大小有無變化?請僅就圖2的情形給出證明;
(3)問題解決
①在旋轉(zhuǎn)過程中,BE的最大值為 ;
②當(dāng)△ADE旋轉(zhuǎn)至B、D、E三點(diǎn)共線時,線段CD的長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖為某班35名學(xué)生投籃成績的條形圖,其中上面部分?jǐn)?shù)據(jù)破損導(dǎo)致數(shù)據(jù)不完全,已知此班學(xué)生投籃成績的中位數(shù)是5,下列選項正確的是_______.
①3球以下(含3球)的人數(shù);②4球以下(含4球)的人數(shù); ③5球以下(含5球)的人數(shù);④6球以下(含6球)的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB∥CD,點(diǎn)M,N分別是AB,CD上兩點(diǎn),點(diǎn)G在AB,CD之間.
(1)求證:∠AMG+∠CNG=∠MGN;
(2)如圖②,點(diǎn)E是AB上方一點(diǎn),MF平分∠AME,若點(diǎn)G恰好在MF的反向延長線上,且NE平分∠CNG,2∠E+∠G=90°,求∠AME的度數(shù);
(3)如圖③,若點(diǎn)P是(2)中的EM上一動點(diǎn),PQ平分∠MPQ.NH平分∠PNC,交AB于點(diǎn)H,PJ∥NH,直接寫出∠JPQ的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】分別從兩個班級中隨意抽取甲、乙兩組各10名學(xué)生,他們的數(shù)學(xué)測驗(yàn)成績(單位:分)如下:
計算甲、乙兩組學(xué)生數(shù)學(xué)測驗(yàn)成績的平均數(shù)、標(biāo)準(zhǔn)差和方差,哪個班級學(xué)生的成績比較整齊?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】九(1)班同學(xué)為了解 2011 年某小區(qū)家庭月均用水情況,隨機(jī)調(diào)查了該小區(qū)部分家庭,并將調(diào)查數(shù)據(jù)進(jìn)行如下整理.請解答以下問題:
(1) 把上面的頻數(shù)分布表和頻數(shù)分布直方圖補(bǔ)充完整;
(2) 求月均用水量不超過 的家庭數(shù)占被調(diào)查家庭總數(shù)的百分比;
(3) 若該小區(qū)有 戶家庭,根據(jù)調(diào)查數(shù)據(jù)估計,該小區(qū)月均用水量超過 的家庭大約有多少戶 ?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是等腰直角三角形,∠BAC=90°,其中A(-2,0),B(0,1),則直線BC的函數(shù)表達(dá)式為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一艘觀光游船從港口A以北偏東60°的方向出港觀光,航行80海里至C處時發(fā)生了側(cè)翻沉船事故,立即發(fā)出了求救信號,一艘在港口正東方向的海警船接到求救信號,測得事故船在它的北偏東37°方向,馬上以40海里每小時的速度前往救援,
(1)求點(diǎn)C到直線AB的距離;
(2)求海警船到達(dá)事故船C處所需的大約時間.(溫馨提示:sin53°≈0.8,cos53°≈0.6)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】無錫陽山水蜜桃上市后,甲、乙兩超市分別用60000元以相同的進(jìn)價購進(jìn)相同箱數(shù)的水蜜桃,甲超市銷售方案是:將水蜜桃按分類包裝銷售,其中挑出優(yōu)質(zhì)大個的水蜜桃400箱,以進(jìn)價的2倍價格銷售,剩下的水蜜桃以高于進(jìn)價10%銷售.乙超市的銷售方案是:不將水蜜桃分類,直接銷售,價格按甲超市分類銷售的兩種水蜜桃售價的平均數(shù)定價.若兩超市將水蜜桃全部售完,其中甲超市獲利42000元(其它成本不計).問:
(1)水蜜桃進(jìn)價為每箱多少元?
(2)乙超市獲利多少元?哪種銷售方式更合算?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com