如圖6所示,在四邊形ABCD中,,對角線AC與BD相交于點O.若不增加任何字母與輔助線,要使得四邊形ABCD是正方形,則還需增加的一個條件是

 

【答案】

…等等

【解析】略

 

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(1)如圖1所示,在四邊形ABCD中,AC=BD,AC與BD相交于點O,E,F(xiàn)分別是AD、BC的中點,連接EF,分別交AC、BD于點M,N,試判斷△OMN的形狀,并加以證明;(提示:利用三角形中位線定理)
(2)如圖2,在四邊形ABCD中,若AB=CD,E,F(xiàn)分別是AD、BC的中點,連接FE并延長,分別與BA,CD的延長線交于點M,N,請在圖2中畫圖并觀察,圖中是否有相等的角?若有,請直接寫出結(jié)論:
 
;
(3)如圖3,在△ABC中,AC>AB,點D在AC上,AB=CD,E,F(xiàn)分別是AD、BC的中點,連接FE并延長,與BA的延長線交于點M,若∠FEC=45°,判斷點M與以AD為直徑的圓的位置關系,并簡要說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

操作探究自我操作:如圖1所示,點O為線段MN的中點,直線PQ與MN相交于點O,利用此圖,作一對以點O為對稱中心的全等△MOA和△NOB,并使A、B兩點都在直線PQ上.(只保留作圖痕跡,不寫作法)
精英家教網(wǎng)
(1)探究1:如圖2所示,在四邊形ABCD中,AB∥CD,點E為BC的中點,∠BAE=∠EAF,AF與DC相交于點F,試探究線段AB與AF,CF之間的等量關系,并證明你的結(jié)論.
(2)探究2:如圖3所示,DE,BC相交于點E,BA交DE于點A,且BE:EC=1:2,∠BAE=∠EDF,CF∥AB.試探究線段AB與DF,CF之間的等量關系,并證明你的結(jié)論.
(3)發(fā)現(xiàn):如圖3所示,DE,BC相交于點E,BA交DE于點A,且BE:EC=1:n,∠BAE=∠EDF,CF∥AB.則線段AB與DF,CF之間的等量關系為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖6所示,在四邊形ABCD中,,對角線AC與BD相交于點O.若不增加任何字母與輔助線,要使得四邊形ABCD是正方形,則還需增加的一個條件是

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖6所示,在四邊形ABCD中,,對角線AC與BD相交于點O.若不增加任何字母與輔助線,要使得四邊形ABCD是正方形,則還需增加的一個條件是

 

查看答案和解析>>

同步練習冊答案