【題目】已知直線l1∥l2∥l3 , 等腰直角△ABC的三個(gè)頂點(diǎn)A,B,C分別在l1 , l2 , l3上,若∠ACB=90°,l1 , l2的距離為1,l2 , l3的距離為3,求:
(1)線段AB的長(zhǎng);
(2) 的值.
【答案】
(1)解:
過(guò)A作AN⊥直線l3于N,過(guò)B作BM⊥l3于M,
則∠BMC=∠ANC=∠BCA=90°,
∴∠BCM+∠MBC=90°,∠BCM+∠ACN=90°,
∴∠MBC=∠ACN,
在△BMC和△CNA中
∴△BMC≌△CNA,
∴BM=CN,AN=CM,
∵l1,l2的距離為1,l2,l3的距離為3,
∴BM=CN=3,CM=AN=1+3=4,
在Rt△BMC中,由勾股定理得:BC=AC= =5,
在Rt△ACB中,由勾股定理得:AB= =5
(2)解:∵直線l2∥直線l3,
∴∠DBC=∠BCM,
∵∠BCD=∠BMC=90°,
∴△BCD∽△CMB,
∴ = ,
∴ = ,
∴BD= ,
∵AB=5 ,
∴ = =
【解析】(1)過(guò)A作AN⊥直線l3于N,過(guò)B作BM⊥l3于M,根據(jù)全等三角形的判定得出△BMC≌△CNA,根據(jù)全等得出BM=CN,AN=CM,求出BM和CM,根據(jù)勾股定理求出BC、AC,再求出AB即可;(2)根據(jù)平行線性質(zhì)得出∠DBC=∠BCM,根據(jù)相似三角形的判定得出△BCD∽△CMB,得出比例式,求出BD,即可求出答案.
【考點(diǎn)精析】本題主要考查了等腰直角三角形和相似三角形的判定與性質(zhì)的相關(guān)知識(shí)點(diǎn),需要掌握等腰直角三角形是兩條直角邊相等的直角三角形;等腰直角三角形的兩個(gè)底角相等且等于45°;相似三角形的一切對(duì)應(yīng)線段(對(duì)應(yīng)高、對(duì)應(yīng)中線、對(duì)應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長(zhǎng)的比等于相似比;相似三角形面積的比等于相似比的平方才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)△ABC的內(nèi)角A、B、C的對(duì)邊長(zhǎng)分別為a、b、c.設(shè)S為△ABC的面積,滿足S= (a2+c2﹣b2). (Ⅰ)求B;
(Ⅱ)若b= ,求( ﹣1)a+2c的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在關(guān)于x的分式方程 ①和一元二次方程(2﹣k)x2+3mx+(3﹣k)n=0②中,k、m、n均為實(shí)數(shù),方程①的根為非負(fù)數(shù).
(1)求k的取值范圍;
(2)當(dāng)方程②有兩個(gè)整數(shù)根x1、x2 , k為整數(shù),且k=m+2,n=1時(shí),求方程②的整數(shù)根;
(3)當(dāng)方程②有兩個(gè)實(shí)數(shù)根x1、x2 , 滿足x1(x1﹣k)+x2(x2﹣k)=(x1﹣k)(x2﹣k),且k為負(fù)整數(shù)時(shí),試判斷|m|≤2是否成立?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,BC=12,AC=5,分別以點(diǎn)A,B為圓心,大于線段AB長(zhǎng)度的一半為半徑作弧,相交于點(diǎn)E,F(xiàn),過(guò)點(diǎn)E,F(xiàn)作直線EF,交AB于點(diǎn)D,連接CD,則△ACD的周長(zhǎng)為( )
A.13
B.17
C.18
D.25
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知平行四邊形ABCD的三個(gè)頂點(diǎn)坐標(biāo)分別是A(m,n),B(2,﹣1),C(﹣m,﹣n),則關(guān)于點(diǎn)D的說(shuō)法正確的是( )
甲:點(diǎn)D在第一象限
乙:點(diǎn)D與點(diǎn)A關(guān)于原點(diǎn)對(duì)稱(chēng)
丙:點(diǎn)D的坐標(biāo)是(﹣2,1)
。狐c(diǎn)D與原點(diǎn)距離是 .
A.甲乙
B.丙丁
C.甲丁
D.乙丙
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線y=﹣x2+2x經(jīng)過(guò)原點(diǎn)O,且與直線y=x﹣2交于B,C兩點(diǎn).
(1)求拋物線的頂點(diǎn)A的坐標(biāo)及點(diǎn)B,C的坐標(biāo);
(2)求證:∠ABC=90°;
(3)在直線BC上方的拋物線上是否存在點(diǎn)P,使△PBC的面積最大?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(4)若點(diǎn)N為x軸上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)N作MN⊥x軸與拋物線交于點(diǎn)M,則是否存在以O(shè),M,N為頂點(diǎn)的三角形與△ABC相似?若存在,請(qǐng)求出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線y=﹣x2+2x經(jīng)過(guò)原點(diǎn)O,且與直線y=x﹣2交于B,C兩點(diǎn).
(1)求拋物線的頂點(diǎn)A的坐標(biāo)及點(diǎn)B,C的坐標(biāo);
(2)求證:∠ABC=90°;
(3)在直線BC上方的拋物線上是否存在點(diǎn)P,使△PBC的面積最大?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(4)若點(diǎn)N為x軸上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)N作MN⊥x軸與拋物線交于點(diǎn)M,則是否存在以O(shè),M,N為頂點(diǎn)的三角形與△ABC相似?若存在,請(qǐng)求出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象與x軸交于點(diǎn)A,與反比例函數(shù)y= (x>0)的圖象交于點(diǎn)B(2,n),過(guò)點(diǎn)B作BC⊥x軸于點(diǎn)C,點(diǎn)P(3n﹣4,1)是該反比例函數(shù)圖象上的一點(diǎn),且∠PBC=∠ABC,求反比例函數(shù)和一次函數(shù)的表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為增強(qiáng)學(xué)生的身體素質(zhì),教育行政部門(mén)規(guī)定學(xué)生每天參加戶外活動(dòng)的平均時(shí)間不少于1小時(shí).為了解學(xué)生參加戶外活動(dòng)的情況,對(duì)部分學(xué)生參加戶外活動(dòng)的時(shí)間進(jìn)行抽樣調(diào)查,并將調(diào)查結(jié)果繪制作成如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)圖中提供的信息解答下列問(wèn)題:
(1)一共調(diào)查了多少名學(xué)生;
(2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若該校共有6000名學(xué)生,根據(jù)以上調(diào)查結(jié)果估計(jì)該校全體學(xué)生每天參與戶外活動(dòng)所用的總時(shí)間.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com