精英家教網(wǎng)如圖,紙上畫了四個(gè)大小一樣的圓,圓心分別是A,B,C,D,直線m通過A,B,直線n通過C,D,用S表示一個(gè)圓的面積,如果四個(gè)圓在紙上蓋住的總面積是5(S-1),直線m,n之間被圓蓋住的面積是8,陰影部分的面積S1,S2,S3滿足關(guān)系式S3=
1
3
S1=
1
3
S2,求S.
分析:觀察圖形可以得到四個(gè)圓之間的位置關(guān)系,根據(jù)重疊部分的面積可以列出一個(gè)方程,然后與題目中S1,S2,S3的關(guān)系聯(lián)立方程組,解方程組得到S的值.
解答:解:由題設(shè)可得:
5(S-1)=4S-S1-S2S3
S1=S2=3S3

∴S3=
5-S
7
.①
又2S-
1
2
S1-S2-
1
2
S3=8,
即:2S-5S3=8  ②
把①代入②消去S3得:S=
81
19
點(diǎn)評(píng):本題考查的是圓與圓的位置關(guān)系,根據(jù)題意結(jié)合圖形列方程組,用代入消元法解方程組求出S的值.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

教材第九章中探索乘法公式時(shí),設(shè)置由圖形面積的不同表示方法驗(yàn)證了乘法公式.我國(guó)著名的數(shù)學(xué)家趙爽,早在公元3世紀(jì),就把一個(gè)矩形分成四個(gè)全等的直角三角形,用四個(gè)全等的直角三角形拼成了一個(gè)大的正方形(如圖1),這個(gè)圖形稱為趙爽弦圖,驗(yàn)證了一個(gè)非常重要的結(jié)論:在直角三角形中兩直角邊a、b與斜邊c滿足關(guān)系式a2+b2=c2,稱為勾股定理.

(1)愛動(dòng)腦筋的小明把這四個(gè)全等的直角三角形拼成了另一個(gè)大的正方形(如圖2),也能驗(yàn)證這個(gè)結(jié)論,請(qǐng)你幫助小明完成驗(yàn)證的過程.
(2)小明又把這四個(gè)全等的直角三角形拼成了一個(gè)梯形(如圖3),利用上面探究所得結(jié)論,求當(dāng)a=3,b=4時(shí)梯形ABCD的周長(zhǎng).(3)如圖4,在每個(gè)小正方形邊長(zhǎng)為1的方格紙中,△ABC的頂點(diǎn)都在方格紙格點(diǎn)上.請(qǐng)?jiān)趫D中畫出△ABC的高BD,利用上面的結(jié)論,求高BD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省鹽城市鹽都區(qū)七年級(jí)下學(xué)期期中考試數(shù)學(xué)試卷(帶解析) 題型:解答題

教材第九章中探索乘法公式時(shí),設(shè)置由圖形面積的不同表示方法驗(yàn)證了乘法公式.我國(guó)著名的數(shù)學(xué)家趙爽,早在公元3世紀(jì),就把一個(gè)矩形分成四個(gè)全等的直角三角形,用四個(gè)全等的直角三角形拼成了一個(gè)大的正方形(如圖①),這個(gè)圖形稱為趙爽弦圖,驗(yàn)證了一個(gè)非常重要的結(jié)論:在直角三角形中兩直角邊、與斜邊滿足關(guān)系式,稱為勾股定理.

(1)愛動(dòng)腦筋的小明把這四個(gè)全等的直角三角形拼成了另一個(gè)大的正方形(如圖②),也能驗(yàn)證這個(gè)結(jié)論,請(qǐng)你幫助小明完成驗(yàn)證的過程.
(2)小明又把這四個(gè)全等的直角三角形拼成了一個(gè)梯形(如圖③),利用上面探究所得結(jié)論,求當(dāng)=3,=4時(shí)梯形ABCD的周長(zhǎng).
(3) 如下圖,在每個(gè)小正方形邊長(zhǎng)為1的方格紙中,△ABC的頂點(diǎn)都在方格紙格點(diǎn)上.請(qǐng)?jiān)趫D中畫出△ABC的高BD,利用上面的結(jié)論,求高BD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2015屆江蘇省鹽城市鹽都區(qū)七年級(jí)下學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:解答題

教材第九章中探索乘法公式時(shí),設(shè)置由圖形面積的不同表示方法驗(yàn)證了乘法公式.我國(guó)著名的數(shù)學(xué)家趙爽,早在公元3世紀(jì),就把一個(gè)矩形分成四個(gè)全等的直角三角形,用四個(gè)全等的直角三角形拼成了一個(gè)大的正方形(如圖①),這個(gè)圖形稱為趙爽弦圖,驗(yàn)證了一個(gè)非常重要的結(jié)論:在直角三角形中兩直角邊與斜邊滿足關(guān)系式,稱為勾股定理.

(1)愛動(dòng)腦筋的小明把這四個(gè)全等的直角三角形拼成了另一個(gè)大的正方形(如圖②),也能驗(yàn)證這個(gè)結(jié)論,請(qǐng)你幫助小明完成驗(yàn)證的過程.

(2)小明又把這四個(gè)全等的直角三角形拼成了一個(gè)梯形(如圖③),利用上面探究所得結(jié)論,求當(dāng)=3,=4時(shí)梯形ABCD的周長(zhǎng).

(3) 如下圖,在每個(gè)小正方形邊長(zhǎng)為1的方格紙中,△ABC的頂點(diǎn)都在方格紙格點(diǎn)上.請(qǐng)?jiān)趫D中畫出△ABC的高BD,利用上面的結(jié)論,求高BD的長(zhǎng).

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

教材第九章中探索乘法公式時(shí),設(shè)置由圖形面積的不同表示方法驗(yàn)證了乘法公式.我國(guó)著名的數(shù)學(xué)家趙爽,早在公元3世紀(jì),就把一個(gè)矩形分成四個(gè)全等的直角三角形,用四個(gè)全等的直角三角形拼成了一個(gè)大的正方形(如圖1),這個(gè)圖形稱為趙爽弦圖,驗(yàn)證了一個(gè)非常重要的結(jié)論:在直角三角形中兩直角邊a、b與斜邊c滿足關(guān)系式a2+b2=c2,稱為勾股定理.

(1)愛動(dòng)腦筋的小明把這四個(gè)全等的直角三角形拼成了另一個(gè)大的正方形(如圖2),也能驗(yàn)證這個(gè)結(jié)論,請(qǐng)你幫助小明完成驗(yàn)證的過程.
(2)小明又把這四個(gè)全等的直角三角形拼成了一個(gè)梯形(如圖3),利用上面探究所得結(jié)論,求當(dāng)a=3,b=4時(shí)梯形ABCD的周長(zhǎng).(3)如圖4,在每個(gè)小正方形邊長(zhǎng)為1的方格紙中,△ABC的頂點(diǎn)都在方格紙格點(diǎn)上.請(qǐng)?jiān)趫D中畫出△ABC的高BD,利用上面的結(jié)論,求高BD的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案