【題目】如圖,反比例函數(shù)(x>0)的圖象經(jīng)過點(diǎn)A(2 ,1),直線AB與反比例函數(shù)圖象交與另一點(diǎn)B(1,a),射線AC與y軸交于點(diǎn)C,∠BAC=75°,AD⊥y軸,垂足為D.
(1)求反比例函數(shù)的解析式;
(2)求tan∠DAC的值及直線AC的解析式.
【答案】(1)反比例函數(shù)為y=(x>0);(2)tan∠DAC=;直線AC的解析式為y=x﹣1.
【解析】
試題(1)根據(jù)反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征易得k=2, 從而求得反比例函數(shù)解析式;
(2)作BH⊥AD于H,如圖,根據(jù)反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征確定B點(diǎn)坐標(biāo)為(1,2),確定AH=2﹣1,BH=2﹣1,可判斷△ABH為等腰直角三角形,所以∠BAH=45°,得到∠DAC=∠BAC﹣∠BAH=30°,根據(jù)特殊角的三角函數(shù)值得tan∠DAC=;由于AD⊥y軸,則OD=1,AD=2, 然后在Rt△OAD中利用正切的定義可計(jì)算出CD=2,易得C點(diǎn)坐標(biāo)為(0,﹣1),于是可根據(jù)待定系數(shù)法求出直線AC的解析式為y=x﹣1.
試題解析:(1)由反比例函數(shù)y=(x>0)的圖象經(jīng)過點(diǎn)A(2,1),得:k=2×1=2,
∴反比例函數(shù)為y=(x>0);
(2)作BH⊥AD于H,如圖,
把B(1,a)代入反比例函數(shù)解析式y(tǒng)=(x>0),得a=2,
∴B點(diǎn)坐標(biāo)為(1,2),
∴AH=2﹣1,BH=2﹣1,
∴△ABH為等腰直角三角形,
∴∠BAH=45°,
∵∠BAC=75°,
∴∠DAC=∠BAC﹣∠BAH=30°,
∴tan∠DAC=tan30°=;
∵AD⊥y軸,
∴OD=1,AD=2,
∵tan∠DAC==,
∴CD=2,
∴OC=1,
∴C點(diǎn)坐標(biāo)為(0,﹣1),
設(shè)直線AC的解析式為y=kx+b,
把A(2,1)、C(0,﹣1)代入
得 ,解得:,
∴直線AC的解析式為y=x﹣1;
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點(diǎn)C為⊙O上一點(diǎn),AE和過點(diǎn)C的切線互相垂直,垂足為E,AE交⊙O于點(diǎn)D,直線EC交AB的延長(zhǎng)線于點(diǎn)P,連接AC,BC,PB:PC=1:2.
(1)求證:AC平分∠BAD;
(2)探究線段PB,AB之間的數(shù)量關(guān)系,并說明理由;
(3)若AD=3,求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲乙兩地相距8000米.張亮騎自行車從甲地出發(fā)勻速前往乙地,出發(fā)10分鐘后,李偉步行從甲地出發(fā)同路勻速前往乙地.張亮到達(dá)乙地后休息片刻,以原來的速度從原路返回.如圖所示是兩人離甲地的距離y(米)與李偉步行時(shí)間x(分)之間的函數(shù)圖象.
(1)求兩人相遇時(shí)李偉離乙地的距離;
(2)請(qǐng)你判斷:當(dāng)張亮返回到甲地時(shí),李偉是否到達(dá)乙地?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題背景:在△ABC中,AB,BC,AC三邊的長(zhǎng)分別為,求這個(gè)三角形的面積,小輝同學(xué)在解答這道題時(shí),先建立一個(gè)正方形網(wǎng)格(每個(gè)小正方形的邊長(zhǎng)為1),再在網(wǎng)格中畫出格點(diǎn)(即三個(gè)頂點(diǎn)都在小正方形的頂點(diǎn)處),如圖所示,這樣不需要求高,而借用網(wǎng)格就能計(jì)算出它的面積.請(qǐng)將△ABC的面積直接填寫在橫線上 .
思維拓展:我們把上述求△ABC面積的方法叫做構(gòu)圖法,若△ABC中,AB,BC,AC三邊長(zhǎng)分別為,2(a>0),請(qǐng)利用圖②的正方形網(wǎng)格(每個(gè)小正方形的邊長(zhǎng)為a)畫出相應(yīng)的△ABC,直接寫出此三角形最長(zhǎng)邊上的高是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場(chǎng)為了吸引顧客,設(shè)立了可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤(如圖,轉(zhuǎn)盤被均勻分為20份),并規(guī)定:顧客每購(gòu)買200元的商品,就能獲得一次轉(zhuǎn)動(dòng)轉(zhuǎn)盤的機(jī)會(huì).如果轉(zhuǎn)盤停止后,指針正好對(duì)準(zhǔn)紅色、黃色、綠色區(qū)域,那么顧客就可以分別獲得200元、100元、50元的購(gòu)物券,憑購(gòu)物券可以在該商場(chǎng)繼續(xù)購(gòu)物.如果顧客不愿意轉(zhuǎn)轉(zhuǎn)盤,那么可以直接獲得購(gòu)物券30元.
(1)求轉(zhuǎn)動(dòng)一次轉(zhuǎn)盤獲得購(gòu)物券的概率;
(2)轉(zhuǎn)轉(zhuǎn)盤和直接獲得購(gòu)物券,你認(rèn)為哪種方式對(duì)顧客更合算?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,A、B坐標(biāo)為(6,0)、(0,6),P為線段AB上的一點(diǎn).
(1)如圖1,若P為AB的中點(diǎn),點(diǎn)M、N分別是OA、OB邊上的動(dòng)點(diǎn),且保持AM=ON,則在點(diǎn)M、N運(yùn)動(dòng)的過程中,探究線段PM、PN之間的位置關(guān)系與數(shù)量關(guān)系,并說明理由.
(2)如圖2,若P為線段AB上異于A、B的任意一點(diǎn),過B點(diǎn)作BD⊥OP,交OP、OA分別于F、D兩點(diǎn),E為OA上一點(diǎn),且∠PEA=∠BDO,試判斷線段OD與AE的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在和中,、、、在同一直線上,下面有四個(gè)條件:
①;②;③;④.請(qǐng)你從中選三個(gè)作為題設(shè),余下的一個(gè)作為結(jié)論,寫出一個(gè)真命題,并加以證明.
解:我寫的真命題是:
已知:____________________________________________;
求證:___________.(注:不能只填序號(hào))
證明如下:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=AC,AC邊上的中線BD把△ABC的周長(zhǎng)分為21厘米和12厘米兩部分,求△ABC各邊的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com