把一個(gè)三角形變成和與它相似的三角形.
(1)如果邊長擴(kuò)大為原來的100倍,那么面積擴(kuò)大為原來的________倍.
(2)如果面積擴(kuò)大為原來的100倍,那么邊長擴(kuò)大為原來的________倍.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源:數(shù)學(xué)教研室 題型:044
如圖1,在正方形ABCD中,E是AD中點(diǎn),F(xiàn)是BA延長線上一點(diǎn),AB=2AF.
(1)試說明△ABE與△ADF能夠完全重合.
(2)閱讀下面材料.
如圖2,把△ABC沿直線BC平行移動(dòng)線段BC的長度,可以變到△ECD的位置;如圖3,以BC為軸把△ABC翻折180°,可以變到△DBC的位置;如圖4,以點(diǎn)A為中心,把△ABC旋轉(zhuǎn)180°,可以變到△AED的位置.像這樣,其中一個(gè)三角形是由另一個(gè)三角形按平移、翻折、旋轉(zhuǎn)等方法變成的.這種只改變位置,不改變形狀、大小的圖形變換,叫做三角形的全等變換,回答下列問題:
①在圖1中,可以通過平移、翻折、旋轉(zhuǎn)中的哪一種方法,使△ABE變到△ADF的位置?
②指出圖1中線段BE和DF之間的關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:三點(diǎn)一測(cè)叢書八年級(jí)數(shù)學(xué)上 題型:044
平移、對(duì)稱與旋轉(zhuǎn)是常見的幾何變換,它們都是把一個(gè)幾何圖形F1變換成為一個(gè)幾何圖形F2,而且這種變換僅改變圖形的位置,不改變圖形的形狀和大小.
例如:把△ABC沿直線BC平行移動(dòng),可以變到△ECD的位置(如圖1);以BC為軸把△ABC翻折,可以變到△BDC的位置(如圖2);繞A點(diǎn)把△ABC逆時(shí)針旋轉(zhuǎn),可以變到△AED的位置(如圖3).
像這樣,其中一個(gè)三角形是由另一個(gè)三角形按平行移動(dòng)、翻折、旋轉(zhuǎn)等方法變成的,這種只改變位置,不改變形狀大小的圖形變換,叫做三角形的全等變換.
如圖,在正方形ABCD中,E是AD的中點(diǎn),F(xiàn)是BA的延長線上一點(diǎn),AF=AB.
(1)你認(rèn)為可以通過平移、翻折、旋轉(zhuǎn)中的哪一種方法,使△ABE變到△ADF的位置,怎樣變化?
(2)根據(jù)全等變換的意義,你能否知道線段BE與DF之間的關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:044
如圖1,在正方形ABCD中,E是AD中點(diǎn),F(xiàn)是BA延長線上一點(diǎn),AB=2AF.
(1)試說明△ABE與△ADF能夠完全重合.
(2)閱讀下面材料.
如圖2,把△ABC沿直線BC平行移動(dòng)線段BC的長度,可以變到△ECD的位置;如圖3,以BC為軸把△ABC翻折180°,可以變到△DBC的位置;如圖4,以點(diǎn)A為中心,把△ABC旋轉(zhuǎn)180°,可以變到△AED的位置.像這樣,其中一個(gè)三角形是由另一個(gè)三角形按平移、翻折、旋轉(zhuǎn)等方法變成的.這種只改變位置,不改變形狀、大小的圖形變換,叫做三角形的全等變換,回答下列問題:
①在圖1中,可以通過平移、翻折、旋轉(zhuǎn)中的哪一種方法,使△ABE變到△ADF的位置?
②指出圖1中線段BE和DF之間的關(guān)系.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com