把一個(gè)三角形變成和與它相似的三角形.

(1)如果邊長擴(kuò)大為原來的100倍,那么面積擴(kuò)大為原來的________倍.

(2)如果面積擴(kuò)大為原來的100倍,那么邊長擴(kuò)大為原來的________倍.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:數(shù)學(xué)教研室 題型:044

如圖1,在正方形ABCD中,E是AD中點(diǎn),F(xiàn)是BA延長線上一點(diǎn),AB=2AF.

(1)試說明△ABE與△ADF能夠完全重合.

(2)閱讀下面材料.

如圖2,把△ABC沿直線BC平行移動(dòng)線段BC的長度,可以變到△ECD的位置;如圖3,以BC為軸把△ABC翻折180°,可以變到△DBC的位置;如圖4,以點(diǎn)A為中心,把△ABC旋轉(zhuǎn)180°,可以變到△AED的位置.像這樣,其中一個(gè)三角形是由另一個(gè)三角形按平移、翻折、旋轉(zhuǎn)等方法變成的.這種只改變位置,不改變形狀、大小的圖形變換,叫做三角形的全等變換,回答下列問題:

①在圖1中,可以通過平移、翻折、旋轉(zhuǎn)中的哪一種方法,使△ABE變到△ADF的位置?

②指出圖1中線段BE和DF之間的關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:三點(diǎn)一測(cè)叢書八年級(jí)數(shù)學(xué)上 題型:044

幾何變換

  平移、對(duì)稱與旋轉(zhuǎn)是常見的幾何變換,它們都是把一個(gè)幾何圖形F1變換成為一個(gè)幾何圖形F2,而且這種變換僅改變圖形的位置,不改變圖形的形狀和大小.

  例如:把△ABC沿直線BC平行移動(dòng),可以變到△ECD的位置(如圖1);以BC為軸把△ABC翻折,可以變到△BDC的位置(如圖2);繞A點(diǎn)把△ABC逆時(shí)針旋轉(zhuǎn),可以變到△AED的位置(如圖3).

  像這樣,其中一個(gè)三角形是由另一個(gè)三角形按平行移動(dòng)、翻折、旋轉(zhuǎn)等方法變成的,這種只改變位置,不改變形狀大小的圖形變換,叫做三角形的全等變換.

如圖,在正方形ABCD中,E是AD的中點(diǎn),F(xiàn)是BA的延長線上一點(diǎn),AF=AB.

(1)你認(rèn)為可以通過平移、翻折、旋轉(zhuǎn)中的哪一種方法,使△ABE變到△ADF的位置,怎樣變化?

(2)根據(jù)全等變換的意義,你能否知道線段BE與DF之間的關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:044

如圖1,在正方形ABCD中,E是AD中點(diǎn),F(xiàn)是BA延長線上一點(diǎn),AB=2AF.

(1)試說明△ABE與△ADF能夠完全重合.

(2)閱讀下面材料.

如圖2,把△ABC沿直線BC平行移動(dòng)線段BC的長度,可以變到△ECD的位置;如圖3,以BC為軸把△ABC翻折180°,可以變到△DBC的位置;如圖4,以點(diǎn)A為中心,把△ABC旋轉(zhuǎn)180°,可以變到△AED的位置.像這樣,其中一個(gè)三角形是由另一個(gè)三角形按平移、翻折、旋轉(zhuǎn)等方法變成的.這種只改變位置,不改變形狀、大小的圖形變換,叫做三角形的全等變換,回答下列問題:

①在圖1中,可以通過平移、翻折、旋轉(zhuǎn)中的哪一種方法,使△ABE變到△ADF的位置?

②指出圖1中線段BE和DF之間的關(guān)系.

查看答案和解析>>

同步練習(xí)冊(cè)答案