【題目】在平面直角坐標(biāo)系中,設(shè)二次函數(shù)y1=mx2﹣6mx+8m(m為常數(shù)).

(1)若函數(shù)y1經(jīng)過點(diǎn)(1,3),求函數(shù)y1的表達(dá)式;

(2)若m0,當(dāng)x<時(shí),此二次函數(shù)y隨x的增大而增大,求a的取值范圍;

(3)已知一次函數(shù)y2=x﹣2,當(dāng)y1y20時(shí),求x的取值范圍.

【答案】(1)y1=x2﹣6x+8;(2)a≤6;(3)當(dāng)m0時(shí),x4;當(dāng)m0時(shí),x4且x≠2.

【解析】

1)把已知點(diǎn)坐標(biāo)代入即可確定出所求

2)求出拋物線的對稱軸,根據(jù)m小于0得到拋物線開口向下,利用二次函數(shù)增減性確定出a的范圍即可;

3)把各自的解析式代入已知不等式,分類討論m的范圍即可確定出x的范圍

1)把(1,3)代入y1=mx26mx+8m,m=1,y1=x26x+8

2∵拋物線的對稱軸為直線x==3,m0∴拋物線開口向下,當(dāng)x3時(shí),二次函數(shù)yx的增大而增大,x時(shí),此二次函數(shù)yx的增大而增大,得到3,a6;

3)由題意得y1y2=(mx26mx+8m)(x2)=mx26x+8)(x2)=mx22x40.當(dāng)x2時(shí),(x220,∴當(dāng)m0時(shí),x4當(dāng)m0時(shí),x4x2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】RtABC中,已知C90°,B50°,點(diǎn)D在邊BC上,BD2CD(圖4).把ABC繞著點(diǎn)D逆時(shí)針旋轉(zhuǎn)m0m180)度后,如果點(diǎn)B恰好落在初始RtABC的邊上,那么m_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,∠CAB45°BDAC于點(diǎn)D,AEBC于點(diǎn)EDFAB于點(diǎn)F,AEDF交于點(diǎn)G,連接BG

1)求證:AGBG;

2)已知AG5,BE4,求AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ACBECD都是等邊三角形,點(diǎn)A、D、E在同一直線上,連接BE.

(1)求證:AD=BE;

(2)求∠AEB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某縣教育行政部門為了了解八年級學(xué)生每學(xué)期參加綜合實(shí)踐活動(dòng)的情況,隨機(jī)抽樣調(diào)查了該縣八年級學(xué)生一個(gè)學(xué)期參加綜合實(shí)踐活動(dòng)的天數(shù),并用得到的數(shù)據(jù)繪制了下面兩幅不完整的統(tǒng)計(jì)圖(如圖)

請你根據(jù)圖中提供的信息,回答下列問題:

1)求出參加抽樣調(diào)查的八年級學(xué)生人數(shù),并將頻數(shù)直方圖補(bǔ)充完整.

2)在這次抽樣調(diào)查中,眾數(shù)和中位數(shù)分別是多少?

3)如果該縣共有八年級學(xué)生人,請你估計(jì)“活動(dòng)時(shí)間不少于天”的大約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)已知,是平面上的任意一點(diǎn),過點(diǎn),,垂足分別為點(diǎn)、,求的度數(shù).

2)探究有什么關(guān)系?(直接寫出結(jié)論)

3)通過上面這兩道題,你能說出如果一個(gè)角的兩邊分別垂直于另一個(gè)角的兩邊,則這兩個(gè)角是什么關(guān)系嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,點(diǎn)D從點(diǎn)C出發(fā)沿CA方向以4cm/秒的速度向點(diǎn)A勻速運(yùn)動(dòng),同時(shí)點(diǎn)E從點(diǎn)A出發(fā)沿AB方向以2cm/秒的速度向點(diǎn)B勻速運(yùn)動(dòng),當(dāng)其中一個(gè)動(dòng)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)點(diǎn)D、E運(yùn)動(dòng)的時(shí)間是t秒(0<t≤15).過點(diǎn)DDF⊥BC于點(diǎn)F,連接DE,EF.

(1)當(dāng)t為何值時(shí),DF=DA?

(2)當(dāng)t為何值時(shí),△ADE為直角三角形?請說明理由.

(3)是否存在某一時(shí)刻t,使點(diǎn)F在線段AC的中垂線上,若存在,請求出t值,若不存在,請說明理由.

(4)請用含有t式子表示△DEF的面積,并判斷是否存在某一時(shí)刻t,使△DEF的面積是△ABC面積的,若存在,請求出t值,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=x2+bx+cx軸交于A、B(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C(0,﹣3),對稱軸是直線x=1,直線BC與拋物線的對稱軸交于點(diǎn)D.

(1)求拋物線的函數(shù)解析式;

(2)求直線BC的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)分解因式:

2)解不等式組:,并求它的整數(shù)解的和.

3)解方程:

查看答案和解析>>

同步練習(xí)冊答案