【題目】如圖,四邊形ABCD是平行四邊形,E、F是對角線AC上的兩點,∠1=∠2.
(1)求證:AE=CF;
(2)求證:四邊形EBFD是平行四邊形.

【答案】證明:(1)如圖:∵四邊形ABCD是平行四邊形,
∴AD=BC,AD∥BC,∠3=∠4,
∵∠1=∠3+∠5,∠2=∠4+∠6,∠1=∠2
∴∠5=∠6
∵在△ADE與△CBF中,

∴△ADE≌△CBF(ASA),
∴AE=CF;
(2)證明:∵∠1=∠2,
∴DE∥BF.
又∵由(1)知△ADE≌△CBF,
∴DE=BF,
∴四邊形EBFD是平行四邊形.

【解析】(1)通過全等三角形△ADE≌△CBF的對應邊相等證得AE=CF;
(2)根據(jù)平行四邊形的判定定理:對邊平行且相等的四邊形是平行四邊形證得結論.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】寫出一個一元二次方程 , 使這個方程有兩個相等的實數(shù)根.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在直角梯形ABCD中,AD∥BC,∠A=90°,AB=12,BC=21,AD=16.動點P從點B出發(fā),沿射線BC的方向以每秒2個單位長的速度運動,動點Q同時從點A出發(fā),在線段AD上以每秒1個單位長的速度向點D運動,當其中一個動點到達端點時另一個動點也隨之停止運動.設運動的時間為t(秒).
(1)設△DPQ的面積為S,求S與t之間的函數(shù)關系式;
(2)當t為何值時,四邊形PCDQ是平行四邊形?
(3)分別求出當t為何值時,①PD=PQ,②DQ=PQ.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】與a﹣(a﹣b+c)相等的式子是(
A.a﹣b+c
B.a+b﹣c
C.b﹣c
D.c﹣b

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,以AB為邊在正方形內作等邊△ABE,連接DE,CE,則∠CED的度數(shù)為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2016年12月30日,我市召開的全市經濟工作會議預計2016年徐州實現(xiàn)地區(qū)生產總值5750億元,比去年增長8.5%.5750億元用科學記數(shù)法可表示為元.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了提高身體素質,有些人選擇到專業(yè)的健身中心鍛煉身體,某健身中心的消費方式如下:

普通消費:35/次;

白金卡消費:購卡280/張,憑卡免費消費10次再送2次;

鉆石卡消費:購卡560/張,憑卡每次消費不再收費.

以上消費卡使用年限均為一年,每位顧客只能購買一張卡,且只限本人使用.

1)李叔叔每年去該健身中心健身6次,他應選擇哪種消費方式更合算?

2)設一年內去該健身中心健身x次(x為正整數(shù)),所需總費用為y元,請分別寫出選擇普通消費和白金卡消費的yx的函數(shù)關系式;

3)王阿姨每年去該健身中心健身至少18次,請通過計算幫助王阿姨選擇最合算的消費方式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,∠BAC=90°,四邊形EBOC是平行四邊形,EB交⊙O于點D,連接CD并延長交AB的延長線于點F

1)求證:CF是⊙O的切線;

2)若∠F=30°,EB=6,求圖中陰影部分的面積(結果保留根號和π

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若實數(shù)x,y滿足(x2+y2+2)(x2+y22=0.則x2+y2的值為( 。

A. 1B. 2C. 2 或﹣1D. 2或﹣1

查看答案和解析>>

同步練習冊答案