如圖,矩形OABC的兩邊在坐標軸上,且A(0,-2),AB=4,連接AC,拋物線y=x2+bx+c經(jīng)過A,B兩點.點P由點A出發(fā)以每秒1個單位的速度沿AB邊向點B移動,1秒后點Q也由點A出發(fā)以每秒7個單位的速度沿AO,OC,CB邊向點B移動,當其中一個點到達終點時另一個點也停止移動.
(1)求拋物線的解析式;
(2)當P運動到OC上時,設點P的移動時間為t秒,當PQ⊥AC時,求t的值;
(3)當PQAC時,對于拋物線對稱軸上一點H,∠HOQ>∠POQ,求點H的縱坐標的取值范圍.
(1)∵矩形OABC的兩邊在坐標軸上,且A(0,-2),AB=4,
∴B點坐標為:(4,-2),
∴將A,B兩點代入y=x2+bx+c得:
c=-2
16+4b+c=-2

解得:
b=-4
c=-2
,
∴拋物線解析式為:y=x2-4x-2;

(2)由題意知:A點移動路程為AP=t,
Q點移動路程為7(t-1)=7t-7.
當Q點在OA上時,即0≤7t-7<2,1≤t<
9
7
時,
如圖1,若PQ⊥AC,則有Rt△QAPRt△ABC.
QA
AB
=
AP
BC
,即
7t-7
4
=
t
2
,
∴t=
7
5

7
5
9
7
,
∴此時t值不合題意.
當Q點在OC上時,即2≤7t-7<6,
9
7
≤t<
13
7
時,
如圖2,過Q點作QD⊥AB.
∴AD=OQ=7(t-1)-2=7t-9.
∴DP=t-(7t-9)=9-6t.
若PQ⊥AC,易證Rt△QDPRt△ABC,
QD
AB
=
DP
BC
,即
2
4
=
9-6t
2

∴t=
4
3
,
9
7
4
3
13
7

∴t=
4
3
符合題意.
當Q點在BC上時,即6≤7t-7≤8,
13
7
≤t≤
15
7
時,
如圖3,若PQ⊥AC,過Q點作QGAC,
則QG⊥PG,即∠GQP=90°.
∴∠QPB>90°,這與△QPB的內(nèi)角和為180°矛盾,
此時PQ不與AC垂直.
綜上所述,當t=
4
3
時,有PQ⊥AC.

(3)當PQAC時,如圖4,△BPQ△BAC,
BP
BA
=
BQ
BC
,
4-t
4
=
8-7(t-1)
2
,
解得t=2,即當t=2時,PQAC.
此時AP=2,BQ=CQ=1,
∴P(2,-2),Q(4,-1).
拋物線對稱軸的解析式為x=2,
當H1為對稱軸與OP的交點時,
有∠H1OQ=∠POQ,
∴當yH<-2時,∠HOQ>∠POQ.
作P點關于OQ的對稱點P′,連接PP′交OQ于點M,
過P′作P′N垂直于對稱軸,垂足為N,連接OP′,
在Rt△OCQ中,∵OC=4,CQ=1.
∴OQ=
17
,
∵S△OPQ=S四邊形ABCO-S△AOP-S△COQ-S△QBP=3=
1
2
OQ×PM,
∴PM=
6
17
17
,
∴PP′=2PM=
12
17
17
,
∵∠NPP′=∠COQ.
∴△COQ△NPP′
CQ
OQ
=
P′N
PP′
,
∴P′N=
12
17
,PN=
48
17
,
∴P′(
46
17
,
14
17
),
∴直線OP′的解析式為y=
7
23
x,
∴OP′與NP的交點H2(2,
14
23
).
∴當yH
14
23
時,∠HOP>∠POQ.
綜上所述,當yH<-2或yH
14
23
時,∠HOQ>∠POQ.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

已知,如圖,拋物線y=-x2+bx+c與x軸,y軸分別相交于點A(-1,0),B(0,3)兩點,其頂點為D
(1)求該拋物線的解析式;
(2)若拋物線與x軸另一個交點為E,求四邊形ABDE的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知直線y=kx+2經(jīng)過點P(1,
5
2
),與x軸相交于點A;拋物線y=ax2+bx(a>0)經(jīng)過點A和點P,頂點為M.
(1)求直線y=kx+2的表達式;
(2)求拋物線y=ax2+bx的表達式;
(3)設此直線與y軸相交于點B,直線BM與x軸相交于點C,點D的坐標為(
8
3
,0),試判斷△ACB與△ABD是否相似,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在直角坐標系中,以AB為直徑的⊙C交x軸于A,交y軸于B,滿足OA:OB=4:3,以OC為直徑作⊙D,設⊙D的半徑為2.
(1)求⊙C的圓心坐標;
(2)過C作⊙D的切線EF交x軸于E,交y軸于F,求直線EF的解析式;
(3)拋物線y=ax2+bx+c(a≠0)的對稱軸過C點,頂點在⊙C上,與y軸交點為B,求拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

若拋物線如圖所示,則該二次函數(shù)的解析式為______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,直線l經(jīng)過點A(4,0)和點B(0,4),且與二次函數(shù)y=ax2的圖象在第一象限內(nèi)相交于點P,若△AOP的面積為
9
2
,求二次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

附加題:如圖所示,已知主橋拱為拋物線型,在正常水位下測得主拱寬24m,最高點離水面8m,以水平線AB為x軸,AB的中點為原點建立坐標系.
(1)此橋拱線所在拋物線的解析式.
(2)橋邊有一浮在水面部分高4m,最寬處12
2
m的魚船,試探索此船能否開到橋下?說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,記拋物線y=-x2+1的圖象與x正半軸的交點為A,將線段OA分成n等份,設分點分別為P1,P2,…Pn-1,過每個分點作x軸的垂線,分別與拋物線交于點Q1,Q2,…,Qn-1,再記直角三角形OP1Q1,P1P2Q2,…,Pn-2Pn-1Qn-1的面積分別為S1,S2,…,這樣就有S1=
n2-1
2n3
,S2=
n2-4
2n3
,…;記W=S1+S2+…+Sn-1,當n越來越大時,你猜想W最接近的常數(shù)是( 。
A.
2
3
B.
1
2
C.
1
3
D.
1
4

查看答案和解析>>

同步練習冊答案