【題目】如圖1,點E為矩形ABCD邊AD上一點,點P點Q同時從點B出發(fā),點P沿BE→ED→DC運動到點C停止,點Q沿BC運動到點C停止,它們的運動速度都是1cm/s.設(shè)P,Q出發(fā)t秒時,△BPQ的面積為y cm2,已知y與t的函數(shù)關(guān)系的圖象如圖2(曲線OM為拋物線的一部分).則下列結(jié)論:
①AE=6cm;
②當(dāng)0<t≤10時,y=t2;
③直線NH的解析式為y=﹣5t+110;
④若△ABE與△QBP相似,則t=秒,
其中正確結(jié)論的個數(shù)為( )
A.1個 B.2個 C.3個 D.4個
【答案】
【解析】
試題分析:①觀察圖2可知:
當(dāng)t=10時,點P、E重合,點Q、C重合;
當(dāng)t=14時,點P、D重合.
∴BE=BC=10,DE=14﹣10=4,
∴AE=AD﹣DE=BC﹣DE=6,
∴①正確;
②設(shè)拋物線OM的函數(shù)解析式為y=ax2,
將點(10,40)代入y=ax2中,
得:40=100a,解得:a=,
∴當(dāng)0<t≤10時,y=t2,②成立;
③在Rt△ABE中,∠BAE=90°,BE=10,AE=6,
∴AB==8,
∴點H的坐標(biāo)為(14+8,0),即(22,0),
設(shè)直線NH的解析式為y=kt+b,
∴,解得:,
∴直線NH的解析式為y=﹣5t+110,③成立;
④當(dāng)0<t≤10時,△QBP為等腰三角形,
△ABE為邊長比為6:8:10的直角三角形,
∴當(dāng)t=秒時,△ABE與△QBP不相似,④不正確.
綜上可知:正確的結(jié)論有3個.
故選C.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,AB為⊙O的直徑,點C、D在⊙O上,且BC=6cm,AC=8cm,∠ABD=45°.(1)求BD的長;
(2)求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,△ABC中,AC=BC,以BC為直徑的⊙O交AB于點D,過點D作DE⊥AC于點E,交BC的延長線于點F.
求證:
(1)AD=BD;
(2)DF是⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是圓O的直徑,CD是圓O的一條弦,且CD⊥AB于點E.
(1)若∠A=48°,求∠OCE的度數(shù);
(2)若CD=4,AE=2,求圓O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,圓M經(jīng)過原點O,且與x軸、y軸分別相交于A(﹣8,0),B(0,﹣6)兩點.
(1)求出直線AB的函數(shù)解析式;
(2)若有一拋物線的對稱軸平行于y軸且經(jīng)過點M,頂點C在圓M上,開口向下,且經(jīng)過點B,求此拋物線的函數(shù)解析式;
(3)設(shè)(2)中的拋物線交x軸于D、E兩點,在拋物線上是否存在點P,使得S△PDE=S△ABC?若存在,請求出點P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠AGF=∠ABC,∠1+∠2=180°.
(1)試判斷BF與DE的位置關(guān)系,并說明理由;
(2)若BF⊥AC,∠2=150°,求∠AFG的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,CD是AB邊上的中線,DE⊥AB于點D,交AC于點E.
(1)若BC=3,AC=4,求CD的長;
(2)求證:∠1=∠2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在ABCD中,對角線AC,BD相交于點O,若△AOB的面積為3,則ABCD的面積為( )
A. 6 B. 9 C. 12 D. 18
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】據(jù)《經(jīng)濟日報》報道,某市2019年累計接待游客1362萬人次,旅游總收入達75億元.同比增幅雙雙超過30%,其中數(shù)據(jù)1362萬用科學(xué)記數(shù)法表示為___________________人次.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com