【題目】(本題滿(mǎn)分12分)已知,直線(xiàn)AP是過(guò)正方形ABCD頂點(diǎn)A的任一條直線(xiàn)(不過(guò)B、C、D三點(diǎn)),點(diǎn)B關(guān)于直線(xiàn)AP的對(duì)稱(chēng)點(diǎn)為E,連結(jié)AE、BEDE,直線(xiàn)DE交直線(xiàn)AP于點(diǎn)F

1)如圖1,直線(xiàn)AP與邊BC相交.

∠PAB=20°,則∠ADF= °,∠BEF= °

請(qǐng)用等式表示線(xiàn)段AB、DFEF之間的數(shù)量關(guān)系,并說(shuō)明理由;

2)如圖2,直線(xiàn)AP在正方形ABCD的外部,且,求線(xiàn)段AF的長(zhǎng).

【答案】(1①6545;;(22

【解析】試題分析:(1利用軸對(duì)稱(chēng)的性質(zhì)以及等腰三角形的性質(zhì)得出即可;連接BDBF先依據(jù)翻折的性質(zhì)證明△BEF為等腰直角三角形,從而得到△BFD為直角三角形,由勾股定理可得到BF、FDBD之間的關(guān)系,然后由△ABD為等腰直角三角形,從而得打BDAB之間的關(guān)系,故此可得到BF、FD、AB之間的關(guān)系

2)連接BF、DB.先依據(jù)翻折的性質(zhì)和等腰三角形的性質(zhì)證明∠BFD=90°,然后在△BDF中,由勾股定理可求得BD的長(zhǎng),從而求得AB的長(zhǎng),然后在等腰直角三角形EFB中可求得FG=GB=8,然后再Rt△AGB中,由勾股定理可求得AG的長(zhǎng),由AF=FG-AG可求得AG的長(zhǎng).

試題解析:(1翻折的性質(zhì)可知:∠PAB=∠PAE=20°,AE=AB

∴∠AEB=ABE=×180°-40°=70°

∵ABCD為正方形,

∴AB=AD∠BAD=90°

∴AE=AD,∠DAE=50°

∴∠ADE=AED=×180°-50°=65°

∴∠BEF=180°-70°-65°=45°

線(xiàn)段AB、DF、EF之間的數(shù)量關(guān)系是:BF2+DF2=2AB2

理由:連接BDBF

由翻折的性質(zhì)可知:BF=FE,

∴∠FBE=∠FEB=45°

∴∠BFE=90°

∴BF2+DF2=DB2

BD=AB,

∴BD2=2AB2

∴BF2+DF2=2AB2

2)如圖2所示:連接BFDB

由翻折的性質(zhì)可知:AB=AE,1=2,EF=BF=8,EG=GB

∵AD=AB

∴AE=AD

∴∠1=∠3

∴∠2=∠3

∵∠4=∠5,

∴∠5+∠3=∠2+∠4=90°

∴△FDB△EFB均為直角三角形,

BD=

AB=BD=10×=10

Rt△EFB中,EF=BF,

EB=EF=×8=16

∴GF=EG=BG=8

RtABG中,AG==6

∴AF=FG-AG=8-6=2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】方程x2﹣6x+9=0的解是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】

如圖,在平面直角坐標(biāo)系xoy中,直線(xiàn)軸、軸分別交于點(diǎn)A、B,與雙曲線(xiàn)在第一象限內(nèi)交于點(diǎn)C(1,m).

(1)求的值;

(2)過(guò)軸上的點(diǎn)D,0)作平行于y軸的直線(xiàn)),分別與直線(xiàn)AB和雙曲線(xiàn)交于點(diǎn)P、Q,且PQ=2QD,求APQ的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明的作業(yè)本上有四道利用不等式的性質(zhì),將不等式化為xaxa的作業(yè)題:①由x78解得x1;②由x2x3解得x3③由3x1x7解得x4;④由-3x>-6解得x<-2.其中正確的有( )

A. 1 B. 2

C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算(﹣3.5)+(+2.8)的結(jié)果是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某種細(xì)胞開(kāi)始有2個(gè),1小時(shí)后分裂成4個(gè)并死去1個(gè),2小時(shí)分裂成6個(gè)并死去1個(gè),3小時(shí)后分裂成10個(gè)并死去1個(gè),按此規(guī)律,5小時(shí)后細(xì)胞存活的個(gè)數(shù)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知平面直角坐標(biāo)中有一點(diǎn)M(2﹣a,3a+6),點(diǎn)M到兩坐標(biāo)軸的距離相等,求M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一種病菌的直徑為0.0000036m,用科學(xué)記數(shù)法表示為m.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果三角形的三個(gè)內(nèi)角度數(shù)比為1:1:2,則這個(gè)三角形為(  )

A. 銳角三角形 B. 鈍角三角形

C. 非等腰直角三角形 D. 等腰直角三角形

查看答案和解析>>

同步練習(xí)冊(cè)答案