【題目】已知:△ABC在坐標(biāo)平面內(nèi),三個(gè)頂點(diǎn)的坐標(biāo)分別為A(0,3),B(3,4),C(2,2).(正方形網(wǎng)格中, 每個(gè)小正方形的邊長是1個(gè)單位長度)
(1)畫出△ABC向下平移4個(gè)單位得到的△A1B1C1,并直接寫出C1點(diǎn)的坐標(biāo);
(2)以點(diǎn)B為位似中心,在網(wǎng)格中畫出△A2BC2,使△A2BC2與△ABC位似,且位似比為2︰1,并直接寫出C2點(diǎn)的坐標(biāo)及△A2BC2的面積.
【答案】解:(1)如圖,△A1B1C1即為所求,C1(2,-2)。(2)如圖,△A2BC2即為所求,C2(1,0),△A2BC2的面積:10
【解析】
(1)根據(jù)網(wǎng)格結(jié)構(gòu),找出點(diǎn)A、B、C向下平移4個(gè)單位的對應(yīng)點(diǎn)、、 的位置,然后順次連接即可,再根據(jù)平面直角坐標(biāo)系寫出點(diǎn)的坐標(biāo);(2)延長BA到使A=AB,延長BC到,使C=BC,然后連接A2C2即可,再根據(jù)平面直角坐標(biāo)系寫出點(diǎn)的坐標(biāo),利用△B所在的矩形的面積減去四周三個(gè)小直角三角形的面積,列式計(jì)算即可得解.
本題解析:(1)如圖,△A1B1C1即為所求,C1(2,-2)
(2)如圖,△B為所求, (1,0),
△B 的面積:
6×4×2×6×2×4×2×4=24644=2414=10,
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】邊長為2的正方形ABCD在平面直角坐標(biāo)系中如圖放置,已知點(diǎn)A的橫坐標(biāo)為1,作直線OC與邊AD交于點(diǎn)E.
(1)求∠OCB的正弦值和余弦值;
(2)過O、D兩點(diǎn)作直線,記該直線與直線OC的夾角為 ,試求tan的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:BD為的直徑,O為圓心,點(diǎn)A為圓上一點(diǎn),過點(diǎn)B作的切線交DA的延長線于點(diǎn)F,點(diǎn)C為上一點(diǎn),且,連接BC交AD于點(diǎn)E,連接AC.
如圖1,求證:;
如圖2,點(diǎn)H為內(nèi)部一點(diǎn),連接OH,CH若時(shí),求證:;
在的條件下,若,的半徑為10,求CE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,正方形ABCD和正方形AEFG,連接DG,BE.
(1)發(fā)現(xiàn):當(dāng)正方形AEFG繞點(diǎn)A旋轉(zhuǎn),如圖2,①線段DG與BE之間的數(shù)量關(guān)系是 ;②直線DG與直線BE之間的位置關(guān)系是 .
(2)探究:如圖3,若四邊形ABCD與四邊形AEFG都為矩形,且AD=2AB,AG=2AE,證明:直線DG⊥BE.
(3)應(yīng)用:在(2)情況下,連結(jié)GE(點(diǎn)E在AB上方),若GE∥AB,且AB=,AE=1,則線段DG是多少?(直接寫出結(jié)論)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:二次函數(shù)y=ax2+bx+6(a≠0)的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè),與y軸交于點(diǎn)C,點(diǎn)A、點(diǎn)B的橫坐標(biāo)是一元二次方程x2﹣4x﹣12=0的兩個(gè)根.
(1)請直接寫出點(diǎn)A、點(diǎn)B的坐標(biāo).
(2)請求出該二次函數(shù)表達(dá)式及對稱軸和頂點(diǎn)坐標(biāo).
(3)如圖,在二次函數(shù)對稱軸上是否存在點(diǎn)P,使△APC的周長最?若存在,請求出點(diǎn)P的坐標(biāo);若不存在,那個(gè)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形ABCD中,,,以點(diǎn)A為旋轉(zhuǎn)中心,逆時(shí)針旋轉(zhuǎn)矩形ABCD,旋轉(zhuǎn)角為,得到矩形AEFG,點(diǎn)B、點(diǎn)C、點(diǎn)D的對應(yīng)點(diǎn)分別為點(diǎn)E、點(diǎn)F、點(diǎn)G.
如圖,當(dāng)點(diǎn)E落在DC邊上時(shí),直寫出線段EC的長度為______;
如圖,當(dāng)點(diǎn)E落在線段CF上時(shí),AE與DC相交于點(diǎn)H,連接AC,
求證:≌;
直接寫出線段DH的長度為______.
如圖設(shè)點(diǎn)P為邊FG的中點(diǎn),連接PB,PE,在矩形ABCD旋轉(zhuǎn)過程中,的面積是否存在最大值?若存在請直接寫出這個(gè)最大值;若不存在請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為積極響應(yīng)市委,市政府提出的“實(shí)現(xiàn)偉大中國夢,建設(shè)美麗攀枝花”的號召,我市某校在八,九年級開展征文活動,校學(xué)生會對這兩個(gè)年級各班內(nèi)的投稿情況進(jìn)行統(tǒng)計(jì),并制成了如圖所示的兩幅不完整的統(tǒng)計(jì)圖.
(1)求扇形統(tǒng)計(jì)圖中投稿篇數(shù)為2所對應(yīng)的扇形的圓心角的度數(shù):
(2)求該校八,九年級各班在這一周內(nèi)投稿的平均篇數(shù),并將該條形統(tǒng)計(jì)圖補(bǔ)充完整.
(3)在投稿篇數(shù)為9篇的兩個(gè)班級中,八,九年級各有兩個(gè)班,校學(xué)生會準(zhǔn)備從這四個(gè)中選出兩個(gè)班參加全市的表彰會,請你用列表法或畫樹狀圖的方法求出所選兩個(gè)班正好不在同一年級的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知一次函數(shù)與反比例函數(shù)的圖象相交于點(diǎn),與x軸相交于點(diǎn)B.
(1)求k的值;
(2)以AB為邊作菱形ABCD,使點(diǎn)C在x軸正半軸上,點(diǎn)D在第一象限,求點(diǎn)D的坐標(biāo);
(3)觀察反比例函數(shù)的圖象,請直接寫出:當(dāng)時(shí),自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線經(jīng)過A,B,C三點(diǎn).
(1)求拋物線的解析式。
(2)若點(diǎn)M為第三象限內(nèi)拋物線上一動點(diǎn),點(diǎn)M的橫坐標(biāo)為m,△AMB的面積為S.求S關(guān)于m的函數(shù)關(guān)系式,并求出S的最大值.
(3)若點(diǎn)P是拋物線上的動點(diǎn),點(diǎn)Q是直線上的動點(diǎn),判斷有幾個(gè)位置能夠使得點(diǎn)P、Q、B、O為頂點(diǎn)的四邊形為平行四邊形,直接寫出相應(yīng)的點(diǎn)Q的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com