【題目】有七張正面分別標有數(shù)字:﹣3,﹣2,﹣1,0,1,2,3的卡片,除數(shù)字外其余全部相同,現(xiàn)將它們背面朝上,洗勻后從中隨機抽取一張,記卡片上的數(shù)字為m,則使關于x的方程x2﹣2(m﹣1)x+m2﹣3m=0有實數(shù)根,且不等式組無解的概率是_____.
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列結(jié)論:①2a+b<0;②abc>0;③4a2b+c>0;④a+c>0,其中正確結(jié)論的個數(shù)為( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知一張長方形紙片,AB=CD=a,AD=BC=b(a<b<2a).
將這張紙片沿著過點A的折痕翻折,使點B落在AD邊上的點F,折痕交BC于點E,將折疊后的紙片再次沿著另一條過點A的折痕翻折,點E恰好與點D重合,此時折痕交DC于點G.
(1)在圖中確定點F、點E和點G的位置;
(2)連接AE,則∠EAB= °;
(3)用含有a、b的代數(shù)式表示線段DG的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線的頂點為A(0,1),矩形CDEF的頂點C、F在拋物線上,點D、E在x軸上,CF交y軸于點B(0,2),且矩形其面積為8,此拋物線的解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,有長為 24m 的籬笆,現(xiàn)一面利用墻(墻的最大可用長度 a 為 10m)圍成中間隔有一道籬笆的長方形花圃,設花圃的寬 AB 為 xm,面積為 Sm2.
(1) 求 S 與 x 的函數(shù)關系式及 x 值的取值范圍;
(2) 要圍成面積為 45m2 的花圃,AB 的長是多少米?
(3) 當 AB 的長是多少米時,圍成的花圃的面積最大?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在平面直角坐標系中,直線l與坐標軸相交于A(2,0),B(0,)兩點,將Rt△AOB繞原點O逆時針旋轉(zhuǎn)到Rt△A′OB′.
(1)求直線l的解析式;
(2)若OA′⊥AB,垂足為D,求點D的坐標;
(3)如圖2,若將Rt△AOB繞原點O逆時針旋轉(zhuǎn)90°,A′B′與直線l相交于點F,點E為x軸上一動點,試探究:是否存在點E,使得以點A,E,F為頂點的三角形和△A′BB′相似,若存在,請求出點E的坐標,若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將矩形紙片ABCD沿對角線BD折疊,點C落在點E處,BE交AD于點F,連接AE.
求證:(1)BF=DF;
(2)AE∥BD;
(3)若AB=6,AD=8,求BF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,AC=BC,AB=10,以AB為斜邊向上作Rt△ABD,使∠ADB=90°.連接CD,若CD=7,則AD=_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,已知直線l:y=﹣x﹣1,雙曲線y=,在l上取一點A1,過A1作x軸的垂線交雙曲線于點B1,過B1作y軸的垂線交l于點A2,請繼續(xù)操作并探究:過A2作x軸的垂線交雙曲線于點B2,過B2作y軸的垂線交l于點A3,…,這樣依次得到l上的點A1,A2,A3,…,An,…記點An的橫坐標為an,若a1=2,則a2018=_____;若要將上述操作無限次地進行下去,則a1不可能取的值是_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com