如圖,在△ABC中,AB=AC.
(1)作∠BAC的角平分線,交BC于點D;(尺規(guī)作圖,保留痕跡)
(2)在AD的延長線上任取一點E,連接BE、CE.
求證:△BDE≌△CDE;
(3)當(dāng)AE=2AD時,四邊形ABEC是什么圖形?請說明理由.
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在矩形ABCD中,AB=2,BC=4,對角線AC的垂直平分線分別交AD、AC于點E、O,連接CE,則CE的長為( )
A.3 B.3.5 C.2.5 D.2.8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在□ABCD中,E、F為BC上兩點,且BE=CF,AF=DE.求證:(1)△ABF≌△DCE; (2)四邊形ABCD是矩形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在平面直角坐標(biāo)系中,頂點為(3,4)的拋物線交y軸于點A,交x軸于B、C兩點(點B在點C的左側(cè)),已知點A的坐標(biāo)為A(0,-5).
(1)求此拋物線的解析式;
(2)過點B作線段AB的垂線交拋物線于點D,如果以點C為圓心的圓與直線BD相切,請判斷拋物線的對稱軸l與⊙C有什么位置關(guān)系,并給出證明;
(3)在拋物線上是否存在一點P,使△ACP是以AC為直角邊的直角三角形?若存在,求出點P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,直線l1∥l2,且分別與△ABC的兩邊AB、AC相交,若∠A=50°,∠1=35°,則∠2的度數(shù)為 ( )
A.35° B.65° C.85° D.95°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在△ABC中,∠BAC=90°,AD是中線,E是AD的中點,過點A作AF∥BC交BE的延長線于點F,連接CF.
(1)求證:AD=AF;
(2)如果AB=AC,試判斷四邊形ADCF的形狀,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,AB∥CD,AD平分∠BAC,若∠BAD=70°,則∠ACD的度數(shù)為………………( )
A.35° B.40° C.45° D.50°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com