如圖,ABCD是邊長為1的正方形,其中、、的圓心依次是A、B、C.
(1)求點D沿三條圓弧運動到點G所經(jīng)過的路線長;
(2)判斷直線GB與DF的位置關系,并說明理由.

【答案】分析:本題考查的是弧長公式以及全等三角形的判定求出△FDC≌△GBC.
解答:解:(1)∵AD=1,∠DAE=90°,
的長,
同理,的長,的長,
所以,點D運動到點G所經(jīng)過的路線長l=l1+l2+l3=3π.

(2)直線GB⊥DF.
理由如下:延長GB交DF于H.
∵CD=CB,∠DCF=∠BCG,CF=CG,
∴△FDC≌△GBC.
∴∠F=∠G,
又∵∠F+∠FDC=90°,
∴∠G+∠FDC=90°,
即∠GHD=90°,
故GB⊥DF.
點評:求出弧長后可算出周長.“化曲面為平面”.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

19、如圖,ABCD是邊長為6的正方形,請你建立一個適當?shù)钠矫嬷苯亲鴺讼,并分別寫出A、B、C、D的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,ABCD是邊長為2 a的正方形,AB為半圓O的直徑,CE切⊙O于E,與BA的延長線交于F,求EF的長.
答:EF=
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,ABCD是邊長為9的正方形,E是BC上的一點,BE=
12
EC.將正方形折疊,使得點A與點E重合,折痕為MN,則S△ANE=
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,ABCD是邊長為1的正方形,EFGH是內(nèi)接于ABCD的正方形,AE=a,AF=b,若SEFGH=
2
3
,則|b-a|等于(  )
A、
2
2
B、
2
3
C、
3
2
D、
3
3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,ABCD是邊長為1的正方形,EFGH是內(nèi)接于ABCD的正方形,AE=a,AF=b,若正方形EFGH的面積為
2
3
,則|a-b|等于( 。

查看答案和解析>>

同步練習冊答案