【題目】如圖,在△ABC中,AB=8,BC=10,以B為圓心,任意長為半徑畫弧分別交BA、BC于點M和N,再分別以M、N為圓心,大于 MN長為半徑畫弧,兩弧交于點P,連結(jié)BP并延長交AC于點D,若△BDC的面積為20,則△ABD的面積為( )
A.20
B.18
C.16
D.12
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平面內(nèi)的兩條直線有相交和平行兩種位置關(guān)系.
(1)如圖1,若AB∥CD,點P在AB、CD內(nèi)部,∠B=50°,∠D=30°,求∠BPD.
(2)如圖2,將點P移到AB、CD外部,則∠BPD、∠B、∠D之間有何數(shù)量關(guān)系?(不需證明)
(3)如圖3,寫出∠BPD﹑∠B﹑∠D﹑∠BQD之間的數(shù)量關(guān)系?請證明你的結(jié)論.
(4)如圖4,求出∠A+∠B+∠C+∠D+∠E+∠F的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩位同學(xué)做拋骰子(均勻正方體形狀)實驗,他們共拋了60次,出現(xiàn)向上點數(shù)的次數(shù)如表:
向上點數(shù) | 1 | 2 | 3 | 4 | 5 | 6 |
出現(xiàn)次數(shù) | 8 | 10 | 7 | 9 | 16 | 10 |
(1)計算出現(xiàn)向上點數(shù)為6的頻率.
(2)丙說:“如果拋600次,那么出現(xiàn)向上點數(shù)為6的次數(shù)一定是100次.”請判斷丙的說法是否正確并說明理由.
(3)如果甲乙兩同學(xué)各拋一枚骰子,求出現(xiàn)向上點數(shù)之和為3的倍數(shù)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在⊙O中, = ,弦AB與弦AC交于點A,弦CD與AB交于點F,連接BC.
(1)求證:AC2=ABAF;
(2)若⊙O的半徑長為2cm,∠B=60°,求圖中陰影部分面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線經(jīng)過原點o和x軸上一點A(4,0),拋物線頂點為E,它的對稱軸與x軸交于點D.直線y=﹣2x﹣1經(jīng)過拋物線上一點B(﹣2,m)且與y軸交于點C,與拋物線的對稱軸交于點F.
(1)求m的值及該拋物線對應(yīng)的解析式;
(2)P(x,y)是拋物線上的一點,若S△ADP=S△ADC , 求出所有符合條件的點P的坐標(biāo);
(3)點Q是平面內(nèi)任意一點,點M從點F出發(fā),沿對稱軸向上以每秒1個單位長度的速度勻速運動,設(shè)點M的運動時間為t秒,是否能使以Q、A、E、M四點為頂點的四邊形是菱形.若能,請直接寫出點M的運動時間t的值;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為4的菱形ABCD中,∠A=60°,M是AD邊的中點,點N是AB邊上一動點,將△AMN沿MN所在的直線翻折得到△A′MN,連接A′C,則線段A′C長度的最小值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:在△ABC中,∠A、∠B、∠C的對邊分別是a、b、c,滿足a2+b2+c2+338=10a+24b+26c.
(1)試判斷△ABC的形狀.
(2)求AB邊上的高。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀并填空:
尋求某些勾股數(shù)的規(guī)律:
⑴對于任何一組已知的勾股數(shù)都擴大相同的正整數(shù)倍后,就得到了一組新的勾股數(shù).例如:,我們把它擴大2倍、3倍,就分別得到和,……若把它擴大11倍,就得到 ,若把它擴大n倍,就得到 .
⑵對于任意一個大于1的奇數(shù),存在著下列勾股數(shù):
若勾股數(shù)為3,4,5,因為,則有;
若勾股數(shù)為5,12,13,則有;
若勾股數(shù)為7,24,25,則有 ;……
若勾股數(shù)為m(m為奇數(shù)),n, ,則有m2= ,用m來表示n= ;
當(dāng)m=17時,則n= ,此時勾股數(shù)為 .
⑶對于大于4的偶數(shù):
若勾股數(shù)為6,8,10,因為,則有……請找出這些勾股數(shù)之間的關(guān)系,并用適當(dāng)?shù)淖帜副硎境鏊囊?guī)律來,并求當(dāng)偶數(shù)為24的勾股數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:⊙O的直徑為3,線段AC=4,直線AC和PM分別與⊙O相切于點A,M.
(1)求證:點P是線段AC的中點;
(2)求sin∠PMC的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com