【題目】如圖1,將正方形置于平面直角坐標(biāo)系中,其中邊在軸上,其余各邊均與坐標(biāo)軸平行.直線沿軸的負(fù)方向以每秒1個單位的速度平移,在平移的過程中,該直線被正方形的邊所截得的線段長為,平移的時間為(秒),與的函數(shù)圖象如圖2所示,則圖1中的點的坐標(biāo)為__________,圖2中的值為__________.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,,,,.把一條長為2019個單位長度且沒有彈性的細(xì)線(線的粗細(xì)忽略不計)的一端固定在點A處,并按A-B-C-D-A…的規(guī)律繞在四邊形ABCD的邊上,則細(xì)線另一端所在位置的點的坐標(biāo)是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線l1:y=﹣x+1與x軸,y軸分別交于點A和點B,直線l2:y=kx(k≠0)與直線l1在第一象限交于點C.若∠BOC=∠BCO,則k的值為( 。
A. B. C. D. 2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“國慶”期間,某電影院裝修后重新開業(yè),試營業(yè)期間統(tǒng)計發(fā)現(xiàn),影院每天售出的電影票張數(shù)y(張)與電影票售價(元/張)之間滿足一次函數(shù)關(guān)系: , 是整數(shù),影院每天運(yùn)營成本為1600元,設(shè)影院每天的利潤為w(元)(利潤=票房收入運(yùn)營成本).
(1)試求w與之間的函數(shù)關(guān)系式;
(2)影院將電影票售價定為多少時,每天獲利最大?最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在下列條件中,不能作為判斷△ABD≌△BAC的條件是( )
A. ∠D=∠C,∠BAD=∠ABC B. ∠BAD=∠ABC,∠ABD=∠BAC
C. BD=AC,∠BAD=∠ABC D. AD=BC,BD=AC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線分別與x軸,y軸相交于A,B兩點,0為坐標(biāo)原點,A點的坐標(biāo)為(4,0)
(1)求k的值;
(2)過線段AB上一點P(不與端點重合)作x軸,y軸的垂線,乖足分別為M,N.當(dāng)長方形PMON的周長是10時,求點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】說理填空:如圖,點E是DC的中點,EC=EB,∠CDA=120°,DF//BE,且DF平分∠CDA,若△BCE的周長為18cm,求DC的長.
解: 因為DF平分∠CDA,(已知)
所以∠FDC=∠_________.(____________________)
因為∠CDA=120°,(已知)所以∠FDC=______°.
因為DF//BE,(已知)
所以∠FDC=∠_________=60°.(____________________________________)
又因為EC=EB,(已知)
所以△BCE為等邊三角形.(________________________________________)
因為△BCE的周長為18cm,(已知) 所以BE=EC=BC=6 cm.
因為點E是DC的中點,(已知) 所以DC=2EC=12 cm .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將一張矩形紙片沿著AE折疊后,點D恰好與BC邊上的點F重合,已知AB=6cm,BC=10cm,則EC的長度為_____cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(9分)如圖,已知點B、E、C、F在同一直線上,AB=DE,∠A=∠D,AC∥DF.
求證:(1)△ABC≌△DEF; (2)BE=CF
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com