【題目】在等腰直角三角形ABC中,AB=AC,∠BAC=90°.點P為直線AB上一個動點(點P不與點A,B重合),連接PC,點D在直線BC上,且PD=PC.過點P作PE^PC,點D,E在直線AC的同側,且PE=PC,連接BE.
(1)情況一:當點P在線段AB上時,圖形如圖1 所示;
情況二:如圖2,當點P在BA的延長線上,且AP<AB時,請依題意補全圖2;.
(2)請從問題(1)的兩種情況中,任選一種情況,完成下列問題:
①求證:∠ACP=∠DPB;
②用等式表示線段BC,BP,BE之間的數(shù)量關系,并證明.
【答案】
(1)
解:補全圖形如圖①所示
(2)
解:情況一:
①證明:如圖②,
∵AB=AC,∠BAC=90°,
∴∠ABC=∠ACB=45°,
∵PD=PC,
∴∠1=∠D,
∵∠ACB=∠1+∠2=45°,∠ABC=∠D+∠=45°,
∴∠3=∠2,
即∠ACP=∠DPB;
②BC= BP+BE;理由:
證明:如圖③過P作PF⊥PB交BC于F,
∵PF⊥PB,
∴∠BPF=90°,
∵EP⊥PC,
∴∠EPC=90°,
∴∠4+∠5=∠6+∠5,
∴∠4=∠6,
∵∠PBF=45°,
∴∠PBF=∠PFB=45°,
∴PB=PF,
在△PBE與△PFC中,
,
∴△PBE≌△PFC,
∴BE=FC,
∵BF= BP,
∴BC=BF+FC= BP+BE.
情況二:①如圖④,
∵PD=PC,
∴∠PDC=∠PCD,
∵∠ABC=∠ACB=45°,
∴∠3=∠PDC﹣45°,∠ACP=∠PCD﹣45°
,∴∠BPD=∠ACP;
②如圖④,過P作PF⊥PB交BC于F,
∵PF⊥PB,
∴∠BPF=90°,
∵EP⊥PC,
∴∠EPC=90°,
∴∠4+∠BPC=∠6+∠BPC=90°,
∴∠4=∠6,
∵∠PBF=45°,
∴∠PBF=∠PFB=45°,
∴PB=PF,
在△PBE與△PFC中,
,
∴△PBE≌△PFC,
∴BE=FC,
∵BF= BP,
∴BC=BF﹣FC= BP﹣BE.
【解析】(1)根據(jù)題意補全圖形即可;(2)情況一:①根據(jù)等腰直角三角形的性質得到∠ABC=∠ACB=45°,由等腰三角形的性質得到∠1=∠D根據(jù)三角形的外角的性質即可得到結論;②根據(jù)余角的性質得到∠4=∠6,由等腰直角三角形的性質得到∠PBF=∠PFB=45°,于是得到PB=PF,根據(jù)全等三角形的性質得到BE=FC,由勾股定理得到BF= BP,即可得到結論;
情況二:①,根據(jù)等腰三角形的性質得到∠PDC=∠PCD,由∠ABC=∠ACB=45°,于是得到∠3=∠PDC﹣45°,∠ACP=∠PCD﹣45°,即可得到結論;根據(jù)余角的性質得到∠4=∠6,根據(jù)等腰直角三角形的性質得到∠PBF=∠PFB=45°,于是得到PB=PF,根據(jù)全等三角形的性質得到BE=FC,根據(jù)勾股定理得到BF= BP于是得到結論.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,AD⊥BC于D , 下列條件:①∠B+∠DAC=90°;②∠B=∠DAC;③ = ;④AB2=BDBC . 其中一定能夠判定△ABC是直角三角形的有( 。
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖1,點D、E分別是等邊△ABC邊AC、AB上的點,連接BD、CE,若AE=CD,求證:BD=CE.
(2)如圖2,在(1)問的條件下,點H在BA的延長線上,連接CH交BD延長線于點F.若BF=BC,
①求證:EH=EC;
②請你找出線段AH、AD、DF之間的數(shù)量關系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】探究函數(shù)y=x+ 的圖象與性質
(1)函數(shù)y=x+ 的自變量x的取值范圍是;
(2)下列四個函數(shù)圖象中,函數(shù)y=x+ 的圖象大致是
(3)對于函數(shù)y=x+ ,求當x>0時,y的取值范圍.
請將下面求解此問題的過程補充完整:
解:∵x>0
∴y=x+
=( )2+( )2
=( ﹣ )2+
∵( ﹣ )2≥0,
∴y .
(4)若函數(shù)y= ,則y的取值范圍是
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,反比例函數(shù)y1= 的圖象與一次函數(shù)y2=ax+b的圖象交于點A(1,3)和B(﹣3,m).
(1)求反比例函數(shù)y1= 和一次函數(shù)y2=ax+b的表達式;
(2)點C 是坐標平面內(nèi)一點,BC∥x 軸,AD⊥BC 交直線BC 于點D,連接AC.若AC= CD,求點C的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】△ABC中,AB=AC,∠A=30°,以B為圓心,BC長為半徑畫弧,分別交AC,AB于D,E兩點,并連結BD,DE. 則∠BDE的度數(shù)為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,點H在⊙O上,E是 的中點,過點E作EC⊥AH,交AH的延長線于點C.連接AE,過點E作EF⊥AB于點F.
(1)求證:CE是⊙O的切線;
(2)若FB=2,tan∠CAE= ,求OF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,線段AC和直線l分別垂直線段AB于點A,B.點P是線段AB上的一個動點,由A移動到B,連接CP,過點P作PD⊥CP交l于點D,設線段AP的長為x,BD的長為y,在下列圖象中,能大致表示y與x之間函數(shù)關系的是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=x2+bx+c與x軸交于A、B兩點,B點坐標為(3,0),與y軸交于點C(0,﹣3)
(1)求拋物線的解析式;
(2)點P在拋物線位于第四象限的部分上運動,當四邊形ABPC的面積最大時,求點P的坐標和四邊形ABPC的最大面積.
(3)直線l經(jīng)過A、C兩點,點Q在拋物線位于y軸左側的部分上運動,直線m經(jīng)過點B和點Q,是否存在直線m,使得直線l、m與x軸圍成的三角形和直線l、m與y軸圍成的三角形相似?若存在,求出直線m的解析式,若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com