已知,如圖:每個小正方形邊長為1,連接小正方形的三個頂點,可得△ABC.
(1)求△ABC的周長;
(2)求△ABC的面積.

解:(1)AB=AC==,
BC==,
∴△ABC的周長=2+;

(2)S△ABC=1×4-×1×2-×1×1-×1×2=
分析:(1)根據(jù)勾股定理分別求出AB,BC,AC的長,從而求出△ABC的周長;
(2)三角形的面積等于四個小正方形的面積減去△ABC之外的三個三角形的面積.
點評:本題主要考查圖象識別,從圖象中分析出面積的計算,題目得以解決;另外,勾股定理也是考查點之一.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

用棱長為1cm的若干小正方體按如圖所示的規(guī)律在地面上搭建若個幾何體.圖中每個幾何體自上而下分別叫第一層,第二層…第n層(n為正整數(shù)),其中第一層擺放一個,第二層擺放4個,第三層擺放9個…,依次按規(guī)律擺放.(圖片所示為第三個幾何體)
(1)求搭建第4個幾何體的小立方體的個數(shù),第n個幾何體第n層的個數(shù)及總數(shù).
(2)畫出第2,第3個幾何體的三視圖,并求出這兩個幾何體的所有露出部分(不含底面)的面積之和.
(3)為了美觀,若將幾何體的露出部分都涂上油漆(不含底面),已知噴涂1cm2需要油漆0.1g,求噴涂第n個幾何體,共需要多少g油漆?(用含n的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(1)如圖1,是某市公園周圍街巷的示意圖,A點表示1街與2巷的十字路口,B點表示3街與5巷的十字路口,如果用(1,2)→(2,2)→(3,2)→(3,3)→(3,4)→(3,5)表示由A點到B點的一條路徑,那么,你能同樣的方法寫出由A點到B點盡可能近的其他兩條路徑嗎?

(2)從正三角形、正四邊形、正五邊形、正六邊形、正八邊形、正十邊形、正十二邊形中任選兩種正多邊形鑲嵌,請全部寫出這兩種正多邊形.并從其中任選一種探索這兩種正多邊形共能鑲嵌成幾種不同的平面圖形?說明你的理由.
(3)如圖2所示,已知AB∥CD,分別探索下列四個圖形中∠P(均為小于平角的角)與∠A,∠C的關(guān)系,請你從所得的四個關(guān)系中任選一個加以說明.
(4)閱讀材料:多邊形上或內(nèi)部的一點與多邊形各頂點的連線,將多邊形分割成若干個小三角形.如圖3給出了四邊形的具體分割方法,分別將四邊形分割成了2個、3個、4個小三角形.
請你按照上述方法將圖4中的六邊形進行分割,并寫出得到的小三角形的個數(shù)以及求出每個圖形中的六邊形的內(nèi)角和.試把這一結(jié)論推廣至n邊形,并推導出n邊形內(nèi)角和的計算公式.

查看答案和解析>>

科目:初中數(shù)學 來源:設(shè)計七年級上數(shù)學人教版 人教版 題型:068

已知一個幾何體的俯視圖如圖所示,每個小正形中的數(shù)字表示這一豎行上小正方體的個數(shù),請根據(jù)條件畫出這個幾何體的主視圖和左視圖.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:044

已知一個幾何體的俯視圖如圖3-1-21所示,每個小正形中的數(shù)字表示這一豎行上小正方體的個數(shù),請根據(jù)條件畫出這個幾何體的主視圖和左視圖.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

用棱長為1cm的若干小正方體按如圖所示的規(guī)律在地面上搭建若個幾何體.圖中每個幾何體自上而下分別叫第一層,第二層…第n層(n為正整數(shù)),其中第一層擺放一個,第二層擺放4個,第三層擺放9個…,依次按規(guī)律擺放.(圖片所示為第三個幾何體)
(1)求搭建第4個幾何體的小立方體的個數(shù),第n個幾何體第n層的個數(shù)及總數(shù).
(2)畫出第2,第3個幾何體的三視圖,并求出這兩個幾何體的所有露出部分(不含底面)的面積之和.
(3)為了美觀,若將幾何體的露出部分都涂上油漆(不含底面),已知噴涂1cm2需要油漆0.1g,求噴涂第n個幾何體,共需要多少g油漆?(用含n的代數(shù)式表示)

精英家教網(wǎng)

查看答案和解析>>

同步練習冊答案