【題目】問題:(1)如圖①,在Rt△ABC中,AB=AC,D為BC邊上一點(不與點B,C重合),將線段AD繞點A逆時針旋轉(zhuǎn)90°得到AE,連接EC,則線段BC,DC,EC之間滿足的等量關(guān)系式為 ;
探索:(2)如圖②,在Rt△ABC與Rt△ADE中,AB=AC,AD=AE,將△ADE繞點A旋轉(zhuǎn),使點D落在BC邊上,試探索線段AD,BD,CD之間滿足的等量關(guān)系,并證明你的結(jié)論;
應(yīng)用:(3)如圖③,在四邊形ABCD中,∠ABC=∠ACB=∠ADC=45°.若BD=9,CD=3,求AD的長.
【答案】(1)BC=DC+EC;(2)BD2+CD2=2AD2;(3)AD=6.
【解析】
(1)易證△BAD≌△CAE,即可得到BC=DC+EC
(2)連接CE,易證△BAD≌△CAE,再得到ED=AD,然后在Rt△ECD中利用勾股定理即可求得其關(guān)系;
(3)將線段AD繞點A順時針旋轉(zhuǎn)90°得到AE,連接CE,BE,先證△ABE≌△ACD,再利用在Rt△BED中,由勾股定理,得DE2=BD2-BE2,故2AD2=BD2-CD2,再解出AD的長即可.
解:(1)BC=DC+EC.
∵∠BAC=∠DAE=90°,
∴∠BAC-∠DAC=∠DAE-∠DAC,即∠BAD=∠CAE.
在△BAD和△CAE中,
∴△BAD≌△CAE(SAS),
∴BD=CE,
∴BC=BD+CD=EC+CD.
(2)BD2+CD2=2AD2.
證明如下:
連接CE,如解圖1所示.
∵∠BAC=∠BAD+∠DAC=90°,AB=AC,
∴∠ABC=∠ACB=45°.
∵∠DAE=∠CAE+∠DAC=90°,
∴∠BAD=∠CAE.
在△BAD和△CAE中,
∴△BAD≌△CAE(SAS),
∴BD=CE,∠ACE=∠ABC=45°,
∴∠BCE=∠ACB+∠ACE=90°.
∵∠EAD=90°,AE=AD,
∴ED=AD.
在Rt△ECD中,由勾股定理,
得ED2=CE2+CD2,
∴BD2+CD2=2AD2.
(3)將線段AD繞點A順時針旋轉(zhuǎn)90°得到AE,連接CE,BE,
如解圖2所示,則AE=AD,∠EAD=90°,
∴△EAD是等腰直角三角形,
∴DE=AD,∠AED=45°.
∵∠ABC=∠ACB=ADC=45°,
∴∠BAC=90°,AB=AC.
同(2)的方法,可證得△ABE≌△ACD,
∴BE=CD,∠AEB=∠ADC=45°,
∴∠BEC=∠AEB+∠AED=90°.
在Rt△BED中,由勾股定理,得DE2=BD2-BE2,
∴2AD2=BD2-CD2.
∵BD=9,CD=3,
∴2AD2=92-32=72,
∴AD=6(負值已舍去).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點O是邊長為2的正方形ABCD的中心.函數(shù)y=(x﹣h)2的圖象與正方形ABCD有公共點,則h的取值范圍是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=AC,點D是BC中點,∠EDF兩邊分別交線段AB于點E,交線段AC于點F,且∠EDF+∠BAC=180°
(1)如圖1,當(dāng)∠EDF=90°時,求證:BE=AF;
(2)如圖2,當(dāng)∠EDF=60°時,求證:AE+AF=AD;
(3)如圖3,在(2)的條件下,連接EF并延長EF至點G,使FG=EF,連接CG,若BE=5,CF=4,求CG的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,將△ABC紙片沿中位線EH折疊,使點A對稱點D落在BC邊上,再將紙片分別沿等腰△BED和等腰△DHC的底邊上的高線EF,HG折疊,折疊后的三個三角形拼合形成一個矩形,類似地,對多邊形進行折疊,若翻折后的圖形恰能拼合成一個無縫隙、無重疊的矩形,這樣的矩形稱為疊合矩形.
(1)將□ABCD紙片按圖2的方式折疊成一個疊合矩形AEFG,則操作形成的折痕分別是線段_______,_________;S矩形AEFG:S□ABCD=__________.
(2)□ABCD紙片還可以按圖3的方式折疊成一個疊合矩形EFGH,若EF=5,EH=12,求AD的長;
(3)如圖4,四邊形ABCD紙片滿足AD∥BC,AD<BC,AB⊥BC,AB=8,CD=10,小明把該紙片折疊,得到疊合正方形,請你幫助畫出一種疊合正方形的示意圖,并求出AD、BC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為12,點E在邊AB上,BE=8,過點E作EF∥BC,分別交BD、CD于G、F兩點.若點P、Q分別為DG、CE的中點,則PQ的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某鄉(xiāng)鎮(zhèn)中學(xué)教學(xué)樓對面是一座小山,去年“聯(lián)通”公司在山頂上建了座通訊鐵塔.甲、乙兩位同學(xué)想測出鐵塔的高度,他們用測角器作了如下操作:甲在教學(xué)樓頂A處測得塔尖M的仰角為α,塔座N的仰角為β;乙在一樓B處只能望到塔尖M,測得仰角為θ(望不到底座),他們知道樓高AB=20m,通過查表得:tanα=0.5723,tanβ=0.2191,tanθ=0.7489;請你根據(jù)這幾個數(shù)據(jù),結(jié)合圖形推算出鐵塔高度MN的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場服裝部為了調(diào)動營業(yè)員的積極性,決定實行目標(biāo)管理,根據(jù)目標(biāo)完成的情況對營業(yè)員進行適當(dāng)?shù)莫剟睿疄榱舜_定一個適當(dāng)?shù)脑落N售目標(biāo),商場服裝部統(tǒng)計了每位營業(yè)員在某月的銷售額(單位:萬元),數(shù)據(jù)如下:
17 | 18 | 16 | 13 | 24 | 15 | 28 | 26 | 18 | 19 |
22 | 17 | 16 | 19 | 32 | 30 | 16 | 14 | 15 | 26 |
15 | 32 | 23 | 17 | 15 | 15 | 28 | 28 | 16 | 19 |
對這30個數(shù)據(jù)按組距3進行分組,并整理、描述和分析如下.
頻數(shù)分布表
組別 | 一 | 二 | 三 | 四 | 五 | 六 | 七 |
銷售額 | |||||||
頻數(shù) | 7 | 9 | 3 | 2 | 2 |
數(shù)據(jù)分析表
平均數(shù) | 眾數(shù) | 中位數(shù) |
20.3 | 18 |
請根據(jù)以上信息解答下列問題:
(1)填空:a= ,b= ,c= ;
(2)若將月銷售額不低于25萬元確定為銷售目標(biāo),則有 位營業(yè)員獲得獎勵;
(3)若想讓一半左右的營業(yè)員都能達到銷售目標(biāo),你認為月銷售額定為多少合適?說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,對于點和,給出如下定義:若上存在一點不與重合,使點關(guān)于直線的對稱點在上,則稱為的反射點.下圖為的反射點的示意圖.
(1)已知點的坐標(biāo)為,的半徑為,
①在點,,中,的反射點是____________;
②點在直線上,若為的反射點,求點的橫坐標(biāo)的取值范圍;
(2)的圓心在軸上,半徑為,軸上存在點是的反射點,直接寫出圓心的橫坐標(biāo)的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為弘揚中華傳統(tǒng)文化,某校組織八年級1000名學(xué)生參加漢字聽寫大賽.為了解學(xué)生整體聽寫能力,賽后隨機抽查了部分學(xué)生的成績(得分取正整數(shù),滿分為100分)進行統(tǒng)計分析,并制作成圖表:
組別 | 分數(shù)段 | 頻數(shù) | 頻率 |
一 | 50.5~60.5 | 16 | 0.08 |
二 | 60.5~70.5 | 30 | 0.15 |
三 | 70.5~80.5 | m | 0.25 |
四 | 80.5~90.5 | 80 | n |
五 | 90.5~100.5 | 24 | 0.12 |
請根據(jù)以上圖表提供的信息,解答下列可題:
(1)這次隨機抽查了______名學(xué)生,表中的數(shù)m=______,n=______;此樣本中成績的中位數(shù)落在第______組內(nèi);若繪制扇形統(tǒng)計圖,則在修中“第三組”所對應(yīng)扇形的圓心角的度數(shù)是______
(2)補全頻數(shù)直方圖;
(3)若成績超過80分為優(yōu)秀,請你估計該校八年級學(xué)生中漢字聽寫能力優(yōu)秀的人數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com