【題目】如圖,已知△ABC是等腰三角形,其底邊是BC,點(diǎn)D在線段AB上,E是CB延長線上一點(diǎn),且∠DEC=∠DCE,F(xiàn)是AC上一點(diǎn)且DF∥BC,若∠A=60°.
求證:EB=AD.
【答案】證明見解析
【解析】
由平行線的性質(zhì)得出∠ADF=∠ABC,∠AFD=∠ACB,∠FDC=∠DCE,證明△ABC是等邊三角形,得出∠ABC=∠ACB=60°,證出△ADF是等邊三角形,∠DFC=120°,得出AD=DF,由已知條件得出∠FDC=∠DEC,ED=CD,由AAS證明△DBE≌△CFD,得出EB=DF,即可得出結(jié)論.
∵DF∥BC,∴∠ADF=∠ABC,∠AFD=∠ACB,∠FDC=∠DCE.
∵△ABC是等腰三角形,∠A=60°,∴△ABC是等邊三角形,∴∠ABC=∠ACB=60°,∴∠DBE=120°,∠ADF=∠AFD=60°=∠A,∴△ADF是等邊三角形,∠DFC=120°,∴AD=DF.
∵∠DEC=∠DCE,∴∠FDC=∠DEC,ED=CD.
在△DBE和△CFD中,∵,∴△DBE≌△CFD(AAS),∴EB=DF,∴EB=AD.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,方格紙中小正方形的邊長為1,△ABC的三個頂點(diǎn)都在小正方形的格點(diǎn)上,求:
(1)邊AC,AB,BC的長;
(2)點(diǎn)C到AB邊的距離;
(3)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,點(diǎn)P、Q分別是邊長為4cm的等邊△ABC邊AB、BC上的動點(diǎn),點(diǎn)P從頂點(diǎn)A,點(diǎn)Q從頂點(diǎn)B同時出發(fā),且它們的速度都為1cm/s。
⑴連接AQ、CP交于點(diǎn)M,在點(diǎn)P、Q運(yùn)動的過程中,∠CMQ的大小變化嗎?若變化,則說明理由,若不變,請直接寫出它的度數(shù);
⑵點(diǎn)P、Q在運(yùn)動過程中,設(shè)運(yùn)動時間為t,當(dāng)t為何值時,△PBQ為直角三角形?
⑶如圖2,若點(diǎn)P、Q在運(yùn)動到終點(diǎn)后繼續(xù)在射線AB、BC上運(yùn)動,直線AQ、CP交點(diǎn)為M,則∠CMQ的大小變化嗎?則說明理由;若不變,請求出它的度數(shù)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊△ABC和等邊△CDE,A、C、E三點(diǎn)在一條直線上,點(diǎn)M為AD中點(diǎn),點(diǎn)N為BE中點(diǎn),求證:△CMN是等邊三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,D是BC的中點(diǎn),過D點(diǎn)的直線GF交AC于F,交AC的平行線BG于G點(diǎn),DE⊥DF,交AB于點(diǎn)E,連結(jié)EG、EF.
(1)求證:BG=CF.
(2)請你判斷BE+CF與EF的大小關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,直線l:y=x+m與x軸、y軸分別交于點(diǎn)A和點(diǎn)B(0,﹣1),拋物線y=x2+bx+c經(jīng)過點(diǎn)B,與直線l的另一個交點(diǎn)為C(4,n).
(1)求n的值和拋物線的解析式;
(2)點(diǎn)D在拋物線上,DE∥y軸交直線l于點(diǎn)E,點(diǎn)F在直線l上,且四邊形DFEG為矩形(如圖2),設(shè)點(diǎn)D的橫坐標(biāo)為t(0<t<4),矩形DFEG的周長為p,求p與t的函數(shù)關(guān)系式以及p的最大值;
(3)將△AOB繞平面內(nèi)某點(diǎn)M旋轉(zhuǎn)90°或180°,得到△A1O1B1,點(diǎn)A、O、B的對應(yīng)點(diǎn)分別是點(diǎn)A1、O1、B1.若△A1O1B1的兩個頂點(diǎn)恰好落在拋物線上,那么我們就稱這樣的點(diǎn)為“落點(diǎn)”,請直接寫出“落點(diǎn)”的個數(shù)和旋轉(zhuǎn)180°時點(diǎn)A1的橫坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,CE為三角形的角平分線,AD⊥CE于點(diǎn)F交BC于點(diǎn)D
(1) 若∠BAC=96°,∠B=28°,直接寫出∠BAD=__________°
(2) 若∠ACB=2∠B
① 求證:AB=2CF
② 若EF=2,CF=5,直接寫出=__________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小李從西安通過某快遞公司給在南昌的外婆寄一盒櫻桃,快遞時,他了解到這個公司除收取每次6元的包裝費(fèi)外,櫻桃不超過1kg收費(fèi)22元,超過1kg,則超出部分按每千克10元加收費(fèi)用.設(shè)該公司從西安到南昌快遞櫻桃的費(fèi)用為y(元),所寄櫻桃為x(kg).
(1)求y與x之間的函數(shù)關(guān)系式;
(2)已知小李給外婆快寄了2.5kg櫻桃,請你求出這次快寄的費(fèi)用是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用直尺和圓規(guī)作一個角等于已知角的示意圖如下,則說明∠A′O′B′=∠AOB的依據(jù)是( )
A.(S.S.S.)B.(S.A.S.)C.(A.S.A.)D.(A.A.S.)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com