【題目】如圖,△ABC中,E為BC邊的中點,CD⊥AB,AB=2,AC=1,DE= ,則∠CDE+∠ACD=(
A.60°
B.75°
C.90°
D.105°

【答案】C
【解析】解:∵CD⊥AB,E為BC邊的中點, ∴BC=2CE= ,
∵AB=2,AC=1,
∴AC2+BC2=12+( 2=4=22=AB2 ,
∴∠ACB=90°,
∵tan∠A= = ,
∴∠A=60°,
∴∠ACD=∠B=30°,
∴∠DCE=60°,
∵DE=CE,
∴∠CDE=60°,
∴∠CDE+∠ACD=90°,
故選C.
【考點精析】通過靈活運用直角三角形斜邊上的中線和勾股定理的逆定理,掌握直角三角形斜邊上的中線等于斜邊的一半;如果三角形的三邊長a、b、c有下面關系:a2+b2=c2,那么這個三角形是直角三角形即可以解答此題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】一艘輪船和一艘快艇沿相同路線從甲港出發(fā)到乙港,行駛過程隨時間變化的圖象如圖所示,下列結論錯誤的是( 。

A.輪船的速度為20千米/小時
B.快艇的速度為千米/小時
C.輪船比快艇先出發(fā)2小時
D.快艇比輪船早到2小時

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知一個多邊形的各個內角與它的某個外角的和是2036,:這個多邊形的邊數(shù)和這個外角的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD是正方形,△ADF按順時針方向旋轉一定角度后得到△ABE,

AF=4,AB=7.

(1)旋轉中心為______;旋轉角度為______;

(2)DE的長度為______;

(3)指出BEDF的位置關系如何?并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列說法正確的是( 。

A. 三角形的三條高至少有一條在三角形內

B. 直角三角形只有一條高

C. 三角形的角平分線其實就是角的平分線

D. 三角形的角平分線、中線、高都在三角形的內部

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知∠A=70°,下列角中是∠A的補角的是(

A. 70°B. 110°C. 20°D. 180°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,點D,E分別在AC,BC上,且∠CDE=∠B,將△CDE沿DE折疊,點C恰好落在AB邊上的點F處.若AC=8,AB=10,則CD的長為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某汽車廠改進生產工藝后,每天生產的汽車比原來每天生產的汽車多6輛,那么現(xiàn)在15天的產量就超過了原來20天的產量,若設原來每天能生產x輛,則可列不等式為(  )

A. 15(x+6)>20xB. 15x>20(x+6)C. 15x>20(x-6)D. 15(x+6)≥20x

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將命題“等腰三角形兩底角相等”改寫成“如果……那么……”的形式______,它是______(填“真”或“假”)命題.

查看答案和解析>>

同步練習冊答案