(2012•南關(guān)區(qū)模擬)如圖,在梯形ABCD中,AB∥CD,AD⊥AB,AD=8cm,DC=8cm,AB=12cm.點(diǎn)P從點(diǎn)A出發(fā),沿線(xiàn)段AD勻速運(yùn)動(dòng),與此同時(shí),點(diǎn)Q從點(diǎn)B出發(fā),沿線(xiàn)段BA勻速運(yùn)動(dòng),P、Q兩點(diǎn)運(yùn)動(dòng)的速度均為1cm/s,當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)也停止運(yùn)動(dòng),過(guò)點(diǎn)Q作QM⊥AB交折線(xiàn)BC-CD于點(diǎn)M.以線(xiàn)段MQ為直角邊在MQ的左側(cè)作等腰直角△MQN,以線(xiàn)段AP為一邊在AP的右側(cè)作正方形APEF,設(shè)運(yùn)動(dòng)時(shí)間為t(s),△MQN與正方形APEF重疊部分的面積為S(cm).

(1)求兩點(diǎn)N、F相遇時(shí)t的值;
(2)求S與t的函數(shù)關(guān)系式;
(3)當(dāng)點(diǎn)M在線(xiàn)段CD上運(yùn)動(dòng)時(shí),設(shè)MN分別交PE、PA于點(diǎn)G、H,請(qǐng)直接寫(xiě)出在此時(shí)段△PGH掃過(guò)平面部分的面積.
分析:(1)作CG⊥AB于G,由條件可以得出四邊形AGCD是矩形,就可以求出CG、GB的值,求出∠B的正切值,由QB就可以求出QM,從而求出FQ的值,根據(jù)AN+NQ+QB=AB建立方程就可以求出t值;
(2)分四種情況討論:①0<t≤3;②3<t≤4;③4<t≤6;④6<t≤8,畫(huà)出每一種情況下的圖形,再根據(jù)面積公式即可求解;
(3)當(dāng)點(diǎn)M在線(xiàn)段CD上運(yùn)動(dòng)時(shí),畫(huà)出圖形可知,當(dāng)4≤t≤8時(shí)△PGH掃過(guò)的平面部分為梯形ADRL,根據(jù)圖形的面積公式即可求解.
解答:解:(1)作CG⊥AB于G,如圖1.
∴∠CGA=∠CGB=90°.
∵AD⊥AB,
∴∠DAB=90°.
∵AB∥CD,
∴∠DCG=∠CGB=90°,
∴四邊形AGCD是矩形.
∵AD=8cm,DC=8cm,
∴AD=DC,
∴矩形AGCD是正方形.
∴AG=GC=CD=AD=8cm.
∵AB=12cm,
∴GB=4cm,
∴tan∠CBG=2.
∵QB=t,
∴MQ=2t.
∵△NQM是等腰直角三角形,
∴MQ=NQ=2t.
∵四邊形ANEP是正方形,
∴PA=NA=t,
∴t+2t+t=12,
∴t=3;

(2)①當(dāng)0<t≤3時(shí),如圖2,S=0;
②當(dāng)3<t≤4時(shí),如圖3.
∵QB=t,
∴MQ=NQ=2t,
∴AN=AB-NQ-QB=12-3t.
∵PA=AF=t,
∴NF=AF-AN=t-(12-3t)=4t-12,
∴GF=NF=4t-12,
∴S=S△NFG=
1
2
•GF•NF=
1
2
(4t-12)2=8(t-3)2;
③當(dāng)4<t≤6時(shí),如圖4.
∵QB=t,
∴AQ=AB-QB=12-t,
∴AN=NQ-AQ=8-(12-t)=t-4=AH,
∴PH=AP-AH=t-(t-4)=4,
∴S=S正方形APEF-S△PHG=t2-
1
2
×4×4=t2-8;
④當(dāng)6<t≤8時(shí),如圖5.
∵QB=t,
∴AQ=AB-QB=12-t,
∴AN=NQ-AQ=8-(12-t)=t-4=AH,
∴PH=AP-AH=t-(t-4)=4=PG,
∴S=S矩形APKQ-S△PHG=t(12-t)-
1
2
×4×4=-t2+12t-8;

(3)當(dāng)點(diǎn)M在線(xiàn)段CD上運(yùn)動(dòng)時(shí),4≤t≤8,由t=4與t=8時(shí)的圖形可知,
當(dāng)4≤t≤8時(shí)△PGH掃過(guò)的平面部分為梯形ADRL,如圖6.
∵RL=4(與t=4中圖形的DP相等),AD=8,DR=4,
∴S梯形ADRL=
1
2
(RL+AD)•DR=
1
2
(4+8)×4=24.
故此時(shí)段△PGH掃過(guò)平面部分的面積為24.
點(diǎn)評(píng):本題考查了梯形、等腰直角三角形的性質(zhì),矩形、正方形的判定與性質(zhì),圖形面積的計(jì)算,有一定難度.利用數(shù)形結(jié)合及分類(lèi)討論是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•南關(guān)區(qū)模擬)2012年國(guó)家財(cái)政性教育經(jīng)費(fèi)預(yù)算支出為21984億元,將首次占國(guó)內(nèi)生產(chǎn)總值4%以上.21984這個(gè)數(shù)字用科學(xué)記數(shù)法表示為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•南關(guān)區(qū)模擬)如圖,半徑為1的動(dòng)圓P圓心在拋物線(xiàn)y=(x-2)2-1上,當(dāng)⊙P與x軸相切時(shí),點(diǎn)P的坐標(biāo)為
(2+
2
,1)、(2-
2
,1)、(2,-1)
(2+
2
,1)、(2-
2
,1)、(2,-1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•南關(guān)區(qū)模擬)如圖,矩形ABCO(OA>OC)的兩邊分別在x軸的負(fù)半軸和y軸的正半軸上,點(diǎn)B在反比例函數(shù)y=-
8
x
(x<0)的圖象上,且OC=2.將矩形ABCO以C為旋轉(zhuǎn)中心,逆時(shí)針轉(zhuǎn)90°后得到矩形EFCD,反比例函數(shù)y=
k
x
(x<0)的圖象經(jīng)過(guò)點(diǎn)E.
(1)求k的值;
(2)判斷線(xiàn)段BE的中點(diǎn)M是否在反比例函數(shù)y=
k
x
(x<0)的圖象上,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•南關(guān)區(qū)模擬)思考與推理
如圖①,在矩形ABCD中,點(diǎn)E為CD的中點(diǎn),連接AE并延長(zhǎng)交BC的延長(zhǎng)線(xiàn)于點(diǎn)F,過(guò)點(diǎn)E作EM⊥AF交BC于點(diǎn)M,連接AM,請(qǐng)思考并判斷AE與EF、∠1與∠2具有怎樣的數(shù)量關(guān)系?并推理說(shuō)明你的判斷
探究與應(yīng)用
如圖②,在梯形ABCD中,點(diǎn)E為CD的中點(diǎn),連接AE,過(guò)點(diǎn)E作EM⊥AE交BC于點(diǎn)M,連接AM.若∠EMC=70°,則∠DAE=
20
20
°.

查看答案和解析>>

同步練習(xí)冊(cè)答案